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Coxeter systems

Coxeter system: combinatorial information contained in a (unoriented)
graph I’

@ vertices: generators (of order 2) of a group

o edges: relations (e.g., commutation, braid) between generators
One obtains a presentation
(si|sf =1
sisj = s;s; if i and j are not connected by an edge

sisjs; = s;s;sj if i and j are connected by an edge )
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Coxeter systems

Coxeter system: combinatorial information contained in a (unoriented)
graph I’

@ vertices: generators (of order 2) of a group

o edges: relations (e.g., commutation, braid) between generators
One obtains a presentation

(si|s? =1
sisj = s;s; if i and j are not connected by an edge

sisjs; = s;s;sj if i and j are connected by an edge )

which yields a group Wr.
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Coxeter systems

Coxeter system: combinatorial information contained in a (unoriented)
graph I’

@ vertices: generators (of order 2) of a group

o edges: relations (e.g., commutation, braid) between generators
One obtains a presentation

(si|s? =1
sisj = s;s; if i and j are not connected by an edge

sisjs; = s;s;sj if i and j are connected by an edge )
which yields a group Wr.

In this talk, everything is simply laced.
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Coxeter monoids

The above presentation can be deformed (in an associative algebra
context) to:
s? =1~ (si+1)(si—q)=0.
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Coxeter monoids

The above presentation can be deformed (in an associative algebra
context) to:

s? =1~ (si+1)(si—q) =0.
One obtains a Z[q
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Coxeter monoids

The above presentation can be deformed (in an associative algebra
context) to:

s? =1~ (si+1)(si—q) =0.

One obtains a Z[g*!]-algebra (Iwahori-Hecke) which can be specialized to
complex values of q.
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Coxeter monoids

The above presentation can be deformed (in an associative algebra
context) to:

s? =1~ (si+1)(si—q) =0.

One obtains a Z[g*!]-algebra (Iwahori-Hecke) which can be specialized to
complex values of q.

@ g =1 — group algebra of the Coxeter group Wi
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Coxeter monoids

The above presentation can be deformed (in an associative algebra
context) to:

s? =1~ (si+1)(si—q) =0.

One obtains a Z[g*!]-algebra (Iwahori-Hecke) which can be specialized to
complex values of q.

@ g =1 — group algebra of the Coxeter group Wi

@ generic values of g — generators s; do not close under product
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Coxeter monoids

The above presentation can be deformed (in an associative algebra
context) to:

s? =1~ (sp+1)(si—q) =0.
One obtains a Z[g*!]-algebra (Iwahori-Hecke) which can be specialized to
complex values of q.
@ g =1 — group algebra of the Coxeter group Wi
@ generic values of g — generators s; do not close under product

@ g =0 — monoid algebra of the Coxeter monoid (generated by
ai = —sj)

A D'Andrea (Sapienza) HIK-monoids o 8



Coxeter monoids

The above presentation can be deformed (in an associative algebra
context) to:

s? =1~ (sp+1)(si—q) =0.
One obtains a Z[g*!]-algebra (Iwahori-Hecke) which can be specialized to
complex values of q.
@ g =1 — group algebra of the Coxeter group Wi
@ generic values of g — generators s; do not close under product

@ g =0 — monoid algebra of the Coxeter monoid (generated by
aj = —s;) “0-Hecke algebras”, Norton 1979
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Coxeter monoids

The Coxeter monoid has the same order as the Coxeter group (it can be
viewed as a different product on the same set).
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Coxeter monoids

The Coxeter monoid has the same order as the Coxeter group (it can be
viewed as a different product on the same set). It also appears as the

Richardson-Springer monoid (when dealing with combinatorics of B-orbits
in spherical varieties).

Coxeter monoids are also known as 0-Hecke monoids.
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Coxeter monoids

The Coxeter monoid has the same order as the Coxeter group (it can be
viewed as a different product on the same set). It also appears as the
Richardson-Springer monoid (when dealing with combinatorics of B-orbits
in spherical varieties).

Coxeter monoids are also known as 0-Hecke monoids.

Knowledge of both the Coxeter group and the Coxeter monoid up to
isomorphism determines the Coxeter system.
“Coxeter groups, Coxeter monoids and the Bruhat order” Kenney 2014
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Quotients of Coxeter monoids

(Quotients of) Coxeter monoids appear in the literature.
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(Quotients of ) Coxeter monoids appear in the literature. Examples:

@ Kiselman's semigroup and its generalizations
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Quotients of Coxeter monoids

(Quotients of ) Coxeter monoids appear in the literature. Examples:

@ Kiselman's semigroup and its generalizations

e Catalan monoid
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Kiselman's semigroup

In convexity theory, one may attach to a function f : E — R U {£o0}
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Kiselman's semigroup

In convexity theory, one may attach to a function f : E — R U {£o0}

@ c(f): the largest convex function not exceeding f
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Kiselman's semigroup

In convexity theory, one may attach to a function f : E — R U {£o0}
@ c(f): the largest convex function not exceeding f

@ /(f): the largest lower semicontinuous function not exceeding f
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Kiselman's semigroup
In convexity theory, one may attach to a function f : E — R U {£o0}

@ c(f): the largest convex function not exceeding f
@ /(f): the largest lower semicontinuous function not exceeding f

e m(f)=fif f > —oo everywhere; m(f) = —oo otherwise
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Kiselman's semigroup
In convexity theory, one may attach to a function f : E — R U {£o0}

@ c(f): the largest convex function not exceeding f
@ /(f): the largest lower semicontinuous function not exceeding f

e m(f)=fif f > —oo everywhere; m(f) = —oo otherwise

Then ¢, /, m are idempotent operators
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Kiselman's semigroup

In convexity theory, one may attach to a function f : E — R U {£o0}
@ c(f): the largest convex function not exceeding f
@ /(f): the largest lower semicontinuous function not exceeding f
e m(f)=fif f > —oo everywhere; m(f) = —oo otherwise

Then ¢, I, m are idempotent operators, and satisfy

cle = lcl = Ic
cmec = mecm = mc

Iml = mlm = ml.
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Kiselman's semigroup
In convexity theory, one may attach to a function f : E — R U {£o0}

@ c(f): the largest convex function not exceeding f
@ /(f): the largest lower semicontinuous function not exceeding f

e m(f) =f if f > —oo everywhere; m(f) = —oo otherwise
Then ¢, I, m are idempotent operators, and satisfy
clce =lcl = Ic
cmc = mecm = mc

Iml = mlm = ml.

The monoid (c, /, m) has at most 18 elements.
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Kiselman's semigroup

In convexity theory, one may attach to a function f : E — R U {£o0}
@ c(f): the largest convex function not exceeding f
@ /(f): the largest lower semicontinuous function not exceeding f
e m(f)=fif f > —oo everywhere; m(f) = —oo otherwise

Then ¢, I, m are idempotent operators, and satisfy

cle = lcl = Ic
cmec = mecm = mc

Iml = mlm = ml.

The monoid (c, /, m) has at most 18 elements. Indeed exactly 18 when E
is a real infinite-dimensional normed space, and in this case the above
relations provide a presentation.
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Kiselman's semigroup

In convexity theory, one may attach to a function f : E — R U {£oo}
@ c(f): the largest convex function not exceeding f
@ /(f): the largest lower semicontinuous function not exceeding f
e m(f)=fif f > —oo everywhere; m(f) = —oo otherwise

Then ¢, I, m are idempotent operators, and satisfy

cle = lcl = Ic
cmec = mecm = mc

Iml = mlm = ml.

The monoid (c, /, m) has at most 18 elements. Indeed exactly 18 when E
is a real infinite-dimensional normed space, and in this case the above
relations provide a presentation.

The Kiselman monoid K|, generalizes the above presentation but admits n

generators.
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Reduced expressions in Kiselman's semigroups
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Reduced expressions in Kiselman's semigroups

Kiselman's semigroup K, is generated by n idempotents a;,i =1,...,n.
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Reduced expressions in Kiselman's semigroups

Kiselman's semigroup K, is generated by n idempotents a;,i =1,...,n.

When 1 <7 < j < none has relations ajaja; = ajajaj = a;a;.
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Reduced expressions in Kiselman's semigroups

Kiselman's semigroup K, is generated by n idempotents a;,i =1,...,n.
When 1 <7 < j < none has relations ajaja; = ajajaj = a;a;.

It is easy to show that if between two a; only a;,j > i, occur, then one may
delete the rightmost a;
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Reduced expressions in Kiselman's semigroups

Kiselman's semigroup K, is generated by n idempotents a;,i =1,...,n.
When 1 <7 < j < none has relations ajaja; = ajajaj = a;a;.

It is easy to show that if between two a; only a;,j > i, occur, then one may
delete the rightmost a; (similarly if only lower indices occur, one may
remove the leftmost occurrence).
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Reduced expressions in Kiselman's semigroups

Kiselman's semigroup K, is generated by n idempotents a;,i =1,...,n.
When 1 <7 < j < none has relations ajaja; = ajajaj = a;a;.

It is easy to show that if between two a; only a;,j > i, occur, then one may
delete the rightmost a; (similarly if only lower indices occur, one may
remove the leftmost occurrence).

The only possible reduced expressions are such that between two identical
generators, both higher and lower indices must occur. Using some old
results on confluence (Newman 1942; also Huet 1980) one may show that
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Reduced expressions in Kiselman's semigroups

Kiselman's semigroup K, is generated by n idempotents a;,i =1,...,n.
When 1 <7 < j < none has relations ajaja; = ajajaj = a;a;.

It is easy to show that if between two a; only a;,j > i, occur, then one may
delete the rightmost a; (similarly if only lower indices occur, one may
remove the leftmost occurrence).

The only possible reduced expressions are such that between two identical
generators, both higher and lower indices must occur. Using some old
results on confluence (Newman 1942; also Huet 1980) one may show that

@ Such words are all reduced

@ All choices of cancellations from a given word lead to the same (hence
unique) reduced expression. (Kudryavtseva, Mazorchuk 2009)
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Cardinality of Kiselman's semigroups

K, always has finitely many elements, but its cardinality is not well
understood. (A125625: 1, 2, 5, 18, 115, 1710, 83973...)
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Cardinality of Kiselman's semigroups

K, always has finitely many elements, but its cardinality is not well
understood. (A125625: 1, 2, 5, 18, 115, 1710, 83973...) it grows quickly!
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Cardinality of Kiselman's semigroups

K, always has finitely many elements, but its cardinality is not well
understood. (A125625: 1, 2, 5, 18, 115, 1710, 83973...) it grows quickly!

@ A closed or recursive formula for the cardinality of K, is missing
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Cardinality of Kiselman's semigroups

K, always has finitely many elements, but its cardinality is not well
understood. (A125625: 1, 2, 5, 18, 115, 1710, 83973...) it grows quickly!

@ A closed or recursive formula for the cardinality of K, is missing

@ The only concrete estimate (Kudryavtseva, Mazorchuk 2009) in the
literature is |K,| < nt(" where

2k+l _ 9 if n =2k
L(n) =
3.2k_2 ifn=2k+1
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Cardinality of Kiselman's semigroups

K, always has finitely many elements, but its cardinality is not well
understood. (A125625: 1, 2, 5, 18, 115, 1710, 83973...) it grows quickly!

@ A closed or recursive formula for the cardinality of K, is missing

@ The only concrete estimate (Kudryavtseva, Mazorchuk 2009) in the
literature is |K,| < nt(" where

2k+l _ 9 if n =2k
L(n) =
3.2k_2 ifn=2k+1

o Indeed, log | K| ~ c2"/?
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Cardinality of Kiselman's semigroups

K, always has finitely many elements, but its cardinality is not well
understood. (A125625: 1, 2, 5, 18, 115, 1710, 83973...) it grows quickly!

@ A closed or recursive formula for the cardinality of K, is missing

@ The only concrete estimate (Kudryavtseva, Mazorchuk 2009) in the
literature is |K,| < nt(" where

2k+l _ 9 if n =2k
L(n) = .
3.2k_2 ifn=2k+1

o Indeed, log |K,| ~ c2"/?, separately for even and odd values of n.
(joint with Stella)

A D'Andrea (Sapienza) HK-monoids EErEyE



Catalan monoid

Order decreasing, order preserving functions f : {1,...,n} — {1,...,n}
form a monoid C, with respect to composition.
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Catalan monoid

Order decreasing, order preserving functions f : {1,...,n} — {1,...,n}
form a monoid C, with respect to composition.

The cardinality of C, is given by the n-th Catalan number.
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Catalan monoid

Order decreasing, order preserving functions f : {1,...,n} — {1,...,n}
form a monoid C, with respect to composition.

The cardinality of C, is given by the n-th Catalan number.

C,, has been considered in computer science in the context of hashing and
storing/retrieval of information.
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Catalan monoid

Order decreasing, order preserving functions f : {1,...,n} — {1,...,n}
form a monoid C, with respect to composition.

The cardinality of C, is given by the n-th Catalan number.

C,, has been considered in computer science in the context of hashing and
storing/retrieval of information.

C,,:(a,-,i:l,...,n—l]al?:ai
ajaj = aja; if [i —j| >1

djdjy1di = aj+148idj41
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Catalan monoid

Order decreasing, order preserving functions f : {1,...,n} — {1,...,n}
form a monoid C, with respect to composition.

The cardinality of C, is given by the n-th Catalan number.

C,, has been considered in computer science in the context of hashing and
storing/retrieval of information.

C,,:(a,-,i:l,...,n—l]a%:ai
ajaj = aja; if [i —j| >1

ajaj11aj = aj+13j3j4+1 = 3jaj+1)

Here a; is the function mapping i + 1 to i and fixing all other elements.
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N
Hecke-Kiselman monoids

A general setting generalizing all above examples is that of Kiselman
quotients of 0-Hecke monoids
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Hecke-Kiselman monoids

A general setting generalizing all above examples is that of Kiselman
quotients of 0-Hecke monoids or Hecke-Kiselman monoids, for short.
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Hecke-Kiselman monoids

A general setting generalizing all above examples is that of Kiselman
quotients of 0-Hecke monoids or Hecke-Kiselman monoids, for short.

@ The combinatorial informations is contained in a digraph
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Hecke-Kiselman monoids

A general setting generalizing all above examples is that of Kiselman
quotients of 0-Hecke monoids or Hecke-Kiselman monoids, for short.

@ The combinatorial informations is contained in a digraph (with both
oriented and unoriented edges)
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Hecke-Kiselman monoids

A general setting generalizing all above examples is that of Kiselman
quotients of 0-Hecke monoids or Hecke-Kiselman monoids, for short.

@ The combinatorial informations is contained in a digraph (with both
oriented and unoriented edges) I yielding a presentation of a monoid
HKrZ
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N
Hecke-Kiselman monoids

A general setting generalizing all above examples is that of Kiselman
quotients of 0-Hecke monoids or Hecke-Kiselman monoids, for short.

@ The combinatorial informations is contained in a digraph (with both
oriented and unoriented edges) I yielding a presentation of a monoid
HKrZ

@ one has an idempotent generator a; for each vertex /;
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N
Hecke-Kiselman monoids

A general setting generalizing all above examples is that of Kiselman
quotients of 0-Hecke monoids or Hecke-Kiselman monoids, for short.

@ The combinatorial informations is contained in a digraph (with both

oriented and unoriented edges) I yielding a presentation of a monoid
HKrZ

@ one has an idempotent generator a; for each vertex /;

® a;aja; = aja;ja; if i and j are connected by an unoriented edge
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N
Hecke-Kiselman monoids

A general setting generalizing all above examples is that of Kiselman
quotients of 0-Hecke monoids or Hecke-Kiselman monoids, for short.

@ The combinatorial informations is contained in a digraph (with both

oriented and unoriented edges) I yielding a presentation of a monoid
HKrZ

@ one has an idempotent generator a; for each vertex /;

® a;aja; = aja;ja; if i and j are connected by an unoriented edge = side,
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Hecke-Kiselman monoids
A general setting generalizing all above examples is that of Kiselman
quotients of 0-Hecke monoids or Hecke-Kiselman monoids, for short.

@ The combinatorial informations is contained in a digraph (with both
oriented and unoriented edges) I yielding a presentation of a monoid
HKrZ

@ one has an idempotent generator a; for each vertex /;
® a;aja; = aja;ja; if i and j are connected by an unoriented edge = side,

® ajaja; = aja;aj = a;a; if there is an oriented edge
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Hecke-Kiselman monoids
A general setting generalizing all above examples is that of Kiselman
quotients of 0-Hecke monoids or Hecke-Kiselman monoids, for short.

@ The combinatorial informations is contained in a digraph (with both
oriented and unoriented edges) I yielding a presentation of a monoid
HKrZ

@ one has an idempotent generator a; for each vertex /;
® a;aja; = aja;ja; if i and j are connected by an unoriented edge = side,

® ajaja; = ajajaj = a;a; if there is an oriented edge = arrow,
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N
Hecke-Kiselman monoids

A general setting generalizing all above examples is that of Kiselman
quotients of 0-Hecke monoids or Hecke-Kiselman monoids, for short.

@ The combinatorial informations is contained in a digraph (with both

oriented and unoriented edges) I yielding a presentation of a monoid
HKrZ

@ one has an idempotent generator a; for each vertex /;
® a;aja; = aja;ja; if i and j are connected by an unoriented edge = side,

® ajaja; = ajajaj = a;a; if there is an oriented edge = arrow, connecting
i to J.
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N
Hecke-Kiselman monoids

A general setting generalizing all above examples is that of Kiselman
quotients of 0-Hecke monoids or Hecke-Kiselman monoids, for short.

@ The combinatorial informations is contained in a digraph (with both
oriented and unoriented edges) I yielding a presentation of a monoid
HKrZ

@ one has an idempotent generator a; for each vertex /;

® a;aja; = aja;ja; if i and j are connected by an unoriented edge = side,

® ajaja; = ajajaj = a;a; if there is an oriented edge = arrow, connecting
1 to J.

@ ajaj = aja; if i and j are not connected,
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Hecke-Kiselman monoids

A general setting generalizing all above examples is that of Kiselman
quotients of 0-Hecke monoids or Hecke-Kiselman monoids, for short.

The combinatorial informations is contained in a digraph (with both
oriented and unoriented edges) I yielding a presentation of a monoid
HKrZ

one has an idempotent generator a; for each vertex i;

ajaja; = aja;ja; if i and j are connected by an unoriented edge = side,
ajaja; = ajajaj = a;aj if there is an oriented edge = arrow, connecting
1 to J.

ajaj = aja; if i and j are not connected,

There is at most one edge between any two vertices.
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N
Hecke-Kiselman monoids

A general setting generalizing all above examples is that of Kiselman
quotients of 0-Hecke monoids or Hecke-Kiselman monoids, for short.

@ The combinatorial informations is contained in a digraph (with both
oriented and unoriented edges) I yielding a presentation of a monoid
HKrZ

@ one has an idempotent generator a; for each vertex /;

® a;aja; = aja;ja; if i and j are connected by an unoriented edge = side,

® ajaja; = ajajaj = a;a; if there is an oriented edge = arrow, connecting
1 to J.

@ ajaj = aja; if i and j are not connected,

There is at most one edge between any two vertices.

Reduced expressions are as before, once one takes commutation relations
into account. (joint with Aragona, 2020)
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Finiteness of Hecke-Kiselman monoids

Commutation ab = ba implies aba = bab = ab, thus HK} is a quotient of
HKr if T if obtained from T by:
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Finiteness of Hecke-Kiselman monoids

Commutation ab = ba implies aba = bab = ab, thus HK} is a quotient of
HKr if T if obtained from T by:

4 removing an arrow
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Finiteness of Hecke-Kiselman monoids

Commutation ab = ba implies aba = bab = ab, thus HK} is a quotient of
HKr if T if obtained from T by:

4 removing an arrow

@ making a side into an arrow

A D'Andrea (Sapienza) HIK-monoids Err T



Finiteness of Hecke-Kiselman monoids

Commutation ab = ba implies aba = bab = ab, thus HK} is a quotient of
HKr if T if obtained from T by:

@ removing an arrow
@ making a side into an arrow

@ removing a side
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Finiteness of Hecke-Kiselman monoids

Commutation ab = ba implies aba = bab = ab, thus HK} is a quotient of
HKr if T if obtained from T by:

@ removing an arrow
@ making a side into an arrow

@ removing a side

If I'" is obtained from I by means of a finite sequence of such moves, and
HKr is finite, then HKp must be finite too.
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Finiteness of Hecke-Kiselman monoids

Commutation ab = ba implies aba = bab = ab, thus HK} is a quotient of
HKr if T if obtained from T by:

@ removing an arrow
@ making a side into an arrow

@ removing a side

If I'" is obtained from I by means of a finite sequence of such moves, and
HKr is finite, then HKr must be finite too. (as it is a quotient)
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Finiteness of Hecke-Kiselman monoids

Commutation ab = ba implies aba = bab = ab, thus HK} is a quotient of
HKr if T if obtained from T by:

@ removing an arrow

@ making a side into an arrow

@ removing a side
If I'" is obtained from I by means of a finite sequence of such moves, and
HKr is finite, then HK must be finite too. (as it is a quotient)

If T has no arrows, HKF is finite iff I is a finite disjoint union of finite
Dynking diagrams
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Finiteness of Hecke-Kiselman monoids

Commutation ab = ba implies aba = bab = ab, thus HK} is a quotient of
HKr if T if obtained from T by:

@ removing an arrow

@ making a side into an arrow

@ removing a side
If I'" is obtained from I by means of a finite sequence of such moves, and
HKr is finite, then HK must be finite too. (as it is a quotient)

If T has no arrows, HKF is finite iff I is a finite disjoint union of finite
Dynking diagrams (simply laced = ADE classification).
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Finiteness of Hecke-Kiselman monoids

Commutation ab = ba implies aba = bab = ab, thus HK} is a quotient of
HKr if T if obtained from T by:

@ removing an arrow

@ making a side into an arrow

@ removing a side
If I'" is obtained from I by means of a finite sequence of such moves, and
HKr is finite, then HK must be finite too. (as it is a quotient)
If T has no arrows, HKF is finite iff I is a finite disjoint union of finite
Dynking diagrams (simply laced = ADE classification).

Hence, if HK is finite, then I is obtained by adding arrows to a finite
disjoint union of ADE graphs.
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Finiteness of Hecke-Kiselman monoids

Commutation ab = ba implies aba = bab = ab, thus HK} is a quotient of
HKr if T if obtained from T by:

@ removing an arrow

@ making a side into an arrow

@ removing a side
If I'" is obtained from I by means of a finite sequence of such moves, and
HKr is finite, then HK must be finite too. (as it is a quotient)

If T has no arrows, HKF is finite iff I is a finite disjoint union of finite
Dynking diagrams (simply laced = ADE classification).

Hence, if HK is finite, then I is obtained by adding arrows to a finite
disjoint union of ADE graphs. The converse is false, and apparently very
involved.
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-
Update systems on graphs

Let I be an oriented graph with at most one arrow between any two
vertices.
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-
Update systems on graphs

Let I be an oriented graph with at most one arrow between any two
vertices. An update system on I is a choice of:
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-
Update systems on graphs

Let I be an oriented graph with at most one arrow between any two
vertices. An update system on I is a choice of:

@ a set S; of local states for each vertex 1;
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Update systems on graphs
Let I be an oriented graph with at most one arrow between any two
vertices. An update system on I is a choice of:
@ a set S; of local states for each vertex i;
Sj — 5,'.

@ a local update function f; : [];_,;
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-
Update systems on graphs

Let I be an oriented graph with at most one arrow between any two
vertices. An update system on [ is a choice of:

@ aset S; of local states for each vertex i;

o a local update function f; : [];,; S; = Si.

If S =T1]; Si is the set of global states, each f; induces a global update
function F; : S — S given by

(Fi(s))k =
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-
Update systems on graphs

Let I be an oriented graph with at most one arrow between any two
vertices. An update system on [ is a choice of:

@ aset S; of local states for each vertex i;

o a local update function f; : [];,; S; = Si.

If S =T1]; Si is the set of global states, each f; induces a global update
function F; : S — S given by

(Fi())e {sk if ki
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Update systems on graphs
Let I be an oriented graph with at most one arrow between any two
vertices. An update system on [ is a choice of:

@ aset S; of local states for each vertex i;

o a local update function f; : [];,; S; = Si.

If S =T1]; Si is the set of global states, each f; induces a global update
function F; : S — S given by

: N Sk if k 75 ]
(Fils)i = {f,-(sj,i—>j) if k=i
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Update systems on graphs
Let I be an oriented graph with at most one arrow between any two
vertices. An update system on [ is a choice of:

@ a set S; of local states for each vertex i;

If S =T1]; Si is the set of global states, each f; induces a global update
function F; : S — S given by

@ a local update function f; : ]

Sk ifk;ﬁi
fi(sj,i = Jj) ifk=i

(Fi(s))k = {

Every word in the vertices of I yields a corresponding composition of the
Fi.

The image of the natural homomorphism F(V) — End(S) is the dynamics
monoid of the update system.
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A finiteness argument
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A finiteness argument

o If I has no self-loops, then every F; is idempotent.
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A finiteness argument

o If I has no self-loops, then every F; is idempotent. Henceforth: no
self-loops!
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A finiteness argument

o If I has no self-loops, then every F; is idempotent. Henceforth: no
self-loops!

o If i and j are not connected, then F; and F; commute.
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A finiteness argument

o If I has no self-loops, then every F; is idempotent. Henceforth: no
self-loops!

o If i and j are not connected, then F; and F; commute.
o If i —j, BUT j / i, then FiF;F; = FjF;Fj = FiF;.
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A finiteness argument

e If T has no self-loops, then every F; is idempotent. Henceforth: no
self-loops!

o If i and j are not connected, then F; and F; commute.
o If i —j, BUT j / i, then FiF;F; = FjF;Fj = FiF;.

If T has no cycles of length 1 or 2, then the natural homomorphism
F(V) — End(S) factor through HK.
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A finiteness argument

e If T has no self-loops, then every F; is idempotent. Henceforth: no
self-loops!

o If i and j are not connected, then F; and F; commute.

o If i —j, BUT j 4 i, then F;F;F; = FiFiFj = FiF;.
If T has no cycles of length 1 or 2, then the natural homomorphism
F(V) — End(S) factor through HK.

Example: Cyc,, = Z/nZ with arrows | — i + 1; S; = Z, for all /;
fi(sit1) = siv1+ 1.
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A finiteness argument

e If T has no self-loops, then every F; is idempotent. Henceforth: no
self-loops!

o If i and j are not connected, then F; and F; commute.

o If i —j, BUT j 4 i, then F;F;F; = FiFiFj = FiF;.
If T has no cycles of length 1 or 2, then the natural homomorphism
F(V) — End(S) factor through HK.

Example: Cyc,, = Z/nZ with arrows | — i + 1; S; = Z, for all /;
fi(sit1) = si+1 + 1. Then powers of F1F, ... F, are all distinct.
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A finiteness argument

e If T has no self-loops, then every F; is idempotent. Henceforth: no
self-loops!

o If i and j are not connected, then F; and F; commute.
o If i —j, BUT j / i, then FiF;F; = FjF;Fj = FiF;.

If T has no cycles of length 1 or 2, then the natural homomorphism
F(V) — End(S) factor through HK.

Example: Cyc,, = Z/nZ with arrows | — i + 1; S; = Z, for all /;
fi(sit1) = si+1 + 1. Then powers of F1F, ... F, are all distinct.

Consequently HKcyc, is infinite.
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A finiteness argument

e If T has no self-loops, then every F; is idempotent. Henceforth: no
self-loops!

o If i and j are not connected, then F; and F; commute.

o If i j, BUT j 4 i, then FiFjF; = FiFiF; = FiF;.
If T has no cycles of length 1 or 2, then the natural homomorphism
F(V) — End(S) factor through HK.
Example: Cyc,, = Z/nZ with arrows | — i + 1; S; = Z, for all /;
fi(sit1) = si+1 + 1. Then powers of F1F, ... F, are all distinct.

Consequently HKcyc, is infinite. We learn that if HKr is finite, it contains
no oriented cycle.
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|
Finiteness of HKF

What do we know of I if HKF is finite?
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Finiteness of HKF

What do we know of I if HKF is finite?

@ [ has no oriented (or orientable) cycles
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|
Finiteness of HKF

What do we know of T if HK is finite?

@ [ has no oriented (or orientable) cycles

@ If I has only unoriented edges, then it is a disjoint union of finite
Dynkin graphs
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|
Finiteness of HKF

What do we know of T if HK is finite?

@ [ has no oriented (or orientable) cycles

@ If I has only unoriented edges, then it is a disjoint union of finite
Dynkin graphs

e If I', is the graph with vertices vi, ..., v, connected by arrows v; — v;
iff i <j

A D'Andrea (Sapienza) HIK-monoids E e



|
Finiteness of HKF

What do we know of T if HK is finite?

@ [ has no oriented (or orientable) cycles

@ If I has only unoriented edges, then it is a disjoint union of finite
Dynkin graphs

e If I', is the graph with vertices vi, ..., v, connected by arrows v; — v;
iff i < j, then HKr,
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|
Finiteness of HKF

What do we know of T if HK is finite?

@ [ has no oriented (or orientable) cycles

@ If I has only unoriented edges, then it is a disjoint union of finite
Dynkin graphs

e If I', is the graph with vertices vi, ..., v, connected by arrows v; — v;
iff i < j, then HKr, = Kj, is finite
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|
Finiteness of HKF

What do we know of T if HK is finite?

@ [ has no oriented (or orientable) cycles

@ If I has only unoriented edges, then it is a disjoint union of finite
Dynkin graphs

e If I', is the graph with vertices vi, ..., v, connected by arrows v; — v;
iff i < j, then HKr, = Kj, is finite

e If T has only arrows, HKr is finite iff T is acyclic
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|
Finiteness of HKF

What do we know of T if HK is finite?

@ [ has no oriented (or orientable) cycles

@ If I has only unoriented edges, then it is a disjoint union of finite
Dynkin graphs

e If I', is the graph with vertices vi, ..., v, connected by arrows v; — v;
iff i < j, then HKr, = Kj, is finite

o If I has only arrows, HKF is finite iff I is acyclic (if it is acyclic, it is a
quotient of some HKF,, which is finite)
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|
Finiteness of HKF

What do we know of T if HK is finite?

I" has no oriented (or orientable) cycles

If T has only unoriented edges, then it is a disjoint union of finite
Dynkin graphs

If [, is the graph with vertices vq,. .., v, connected by arrows v; — v;
iff i < j, then HKr, = Kj, is finite

o If I has only arrows, HKF is finite iff I is acyclic (if it is acyclic, it is a
quotient of some HKF,, which is finite)

The mixed case is complicated and exhibits not well understood
interactions between ADE components and arrows between them:
acyclicity and ADE components do not suffice to ensure finiteness.
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Finiteness of Hecke-Kiselman monoids

There is a unique acyclic digraph on four vertices with ADE connected
components which yields an infinite Hecke-Kiselman monoid:

X

This is proved by making it act “transitively” on an infinite set.

a C

b d.

joint with Aragona 2013
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Is universal dynamics possible?

@ Is it possible to set up an update system on the graph I so that
HKr — End(S) be injective?
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Is universal dynamics possible?

@ Is it possible to set up an update system on the graph I so that
HKr — End(S) be injective?

We already know that maps F; satisfy the Hecke-Kiselman relations, but
there might be further relations we failed to spot so far.
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Is universal dynamics possible?

@ Is it possible to set up an update system on the graph I so that
HKr — End(S) be injective?

We already know that maps F; satisfy the Hecke-Kiselman relations, but
there might be further relations we failed to spot so far.

In order to show there are no further universal relation is to set up an
update system on [ in which the F; generate a monoid isomorphic to HKf.
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Is universal dynamics possible?

@ Is it possible to set up an update system on the graph I so that
HKr — End(S) be injective?

We already know that maps F; satisfy the Hecke-Kiselman relations, but
there might be further relations we failed to spot so far.

In order to show there are no further universal relation is to set up an
update system on [ in which the F; generate a monoid isomorphic to HKf.

Idea: set up local functions that (combinatorially?) recover a word (=
update sequence) inducing the information found on outward vertices.
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Kiselman case

The most convenient case to treat is when [ =TI, is the complete (acyclic,
ordered) graph.
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Kiselman case

The most convenient case to treat is when [ =TI, is the complete (acyclic,
ordered) graph. It is convenient since:
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Kiselman case

The most convenient case to treat is when [ =TI, is the complete (acyclic,
ordered) graph. It is convenient since:

@ one has an explicit characterization of reduced words in HKr, = Kp;
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Kiselman case

The most convenient case to treat is when [ =TI, is the complete (acyclic,
ordered) graph. It is convenient since:

@ one has an explicit characterization of reduced words in HKr, = Kp;

@ simplifications from non reduced to reduced words are always
monotone: one may simplify any given word to its reduced form by a
sequence of length-reducing steps and. ..
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Kiselman case

The most convenient case to treat is when [ =TI, is the complete (acyclic,
ordered) graph. It is convenient since:

@ one has an explicit characterization of reduced words in HKr, = Kp;

@ simplifications from non reduced to reduced words are always
monotone: one may simplify any given word to its reduced form by a
sequence of length-reducing steps and. ..

@ ...every such sequence ends on the same reduced word.

A D'Andrea (Sapienza) HIK-monoids Err ey



-
A linking operation

If u,v € F(A) are words in the alphabet A, we define [u, v] to be the
shortest word that
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-
A linking operation

If u,v € F(A) are words in the alphabet A, we define [u, v] to be the
shortest word that

@ has v as a suffix

@ admits u as a subword
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-
A linking operation

If u,v € F(A) are words in the alphabet A, we define [u, v] to be the
shortest word that

@ has v as a suffix
@ admits u as a subword

How to compute [u, v]:

A D'Andrea (Sapienza) HK-monoids Err



-
A linking operation

If u,v € F(A) are words in the alphabet A, we define [u, v] to be the
shortest word that

@ has v as a suffix
@ admits u as a subword
How to compute [u, v]:

@ Factor u = ujus so that uy is longest suffix of u which is a subword of
V.

@ Then [u,v] = uyv.
E.g.: [abcab, babc] = abcbabc.
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-
A linking operation

If u,v € F(A) are words in the alphabet A, we define [u, v] to be the
shortest word that

@ has v as a suffix
@ admits u as a subword
How to compute [u, v]:
@ Factor u = ujus so that uy is longest suffix of u which is a subword of
V.

@ Then [u,v] = uyv.
E.g.: [abcab, babc] = abcbabc.
The product [, ] is neither commutative nor associative. It seems to lack

good properties, but solves the universal dynamics problem for the graph
M.
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A universal update system on [,
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A universal update system on I,

On the graph ', set S; = F(a;,...,a,) and define

fi(sit1,---,5n) = ai[sn, - - - [Si+3, [Sit2, si+1]] - - - |-
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A universal update system on I,

On the graph ', set S; = F(a;,...,a,) and define

f;'(S,'_H, ey 5,,) = a,-[s,,, ce [S,'+3, [5;+2, Si+1]] . ]

Teorema

Let w € F(a1,...,an). If Fu(1,1,...,1) = (s1,S2,.-.,5n), then
[Sn, ... [s3,[s2,51]] . ..] is the (unique) reduced expression of w in
HKr = K.

A D'Andrea (Sapienza) HK-monoids Err



A universal update system on I,

On the graph ', set S; = F(a;,...,a,) and define

f;'(S,'_H, ey 5,,) = a,-[s,,, ce [S,'+3, [5,‘+2, Si+1]] . ]

Teorema

Let w € F(a1,...,an). If Fu(1,1,...,1) = (s1,S2,.-.,5n), then
[Sn, ... [s3,[s2,51]] . ..] is the (unique) reduced expression of w in
HKr = K.

The dynamical complexity of K, is captured by symbolic-combinatorial
properties of the linking operation.
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A universal update system on I,

On the graph ', set S; = F(a;,...,a,) and define

f;'(S,'_H, ey 5,,) = a,-[s,,, ce [Si+3, [5,‘+2, Si+1]] . ]

Teorema

Let w € F(a1,...,an). If Fu(1,1,...,1) = (s1,S2,.-.,5n), then
[Sn, ... [s3,[s2,51]] . ..] is the (unique) reduced expression of w in
HKr = K.

The dynamical complexity of K, is captured by symbolic-combinatorial
properties of the linking operation.

Warning! One obtains a reduced expression WHEN the state (s1,...,sp) is
reachable from (1, 1, ..., 1), but not in general.

joint with Collina 2015
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A universal update system on [,
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A universal update system on [,

We have reached the state

abdc bcd cd d
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A universal update system on I,

We have reached the state
abdc bed cd d
which, according to the theorem, is induced by the word

[d, [cd, [bed, abdc]]]
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A universal update system on I,

We have reached the state
abdc bed cd d
which, according to the theorem, is induced by the word

[d,[cd, [bed, abdc]|] = [d, [cd, bcabdc]]
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A universal update system on I,

We have reached the state
abdc bed cd d
which, according to the theorem, is induced by the word

[d,[cd, [bed, abdc]]] = [d, [cd, bcabdc]] = [d, bcabdc]
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A universal update system on I,

We have reached the state
abdc bcd cd d
which, according to the theorem, is induced by the word
[d,[cd, [bed, abdc]]] = [d, [cd, bcabdc]] = [d, bcabdc] = bcabdc,

as we indeed computed.
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|
What happens for other choices of 7
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|
What happens for other choices of 7

The linking operation [ , ] works for a few other choices of I (e.g.:

equioriented A, ~~ Catalan monoid) but not always. For general choices of
I" one needs to take time priority of local updates into account.
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The linking operation [ , ] works for a few other choices of I (e.g.:
equioriented A, ~~ Catalan monoid) but not always. For general choices of
I" one needs to take time priority of local updates into account.

Good news: Mazorchuk's proof generalizes nicely.
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What happens for other choices of [?

The linking operation [ , ] works for a few other choices of I (e.g.:
equioriented A, ~~ Catalan monoid) but not always. For general choices of
I" one needs to take time priority of local updates into account.

Good news: Mazorchuk's proof generalizes nicely. One may show that all
simplifications from any given word to a reduced expression are monotone.
However, reduced expression is not unique due to possibility to commute
letters but this is the only form of non-uniqueness and can be dealt with by
taking the most lexicographically convenient reduced expression.
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What happens for other choices of [?

The linking operation [ , ] works for a few other choices of I (e.g.:
equioriented A, ~~ Catalan monoid) but not always. For general choices of
I" one needs to take time priority of local updates into account.

Good news: Mazorchuk's proof generalizes nicely. One may show that all
simplifications from any given word to a reduced expression are monotone.
However, reduced expression is not unique due to possibility to commute
letters but this is the only form of non-uniqueness and can be dealt with by
taking the most lexicographically convenient reduced expression.

Idea: as reduced expressions are not unique, suffix means suffix in some
reduced expression. Same with subword. The linking operation needs to be
redefined to account for these new features. New definition is ugly. ..
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What happens for other choices of [?

The linking operation [ , ] works for a few other choices of I (e.g.:
equioriented A, ~~ Catalan monoid) but not always. For general choices of
I" one needs to take time priority of local updates into account.

Good news: Mazorchuk's proof generalizes nicely. One may show that all
simplifications from any given word to a reduced expression are monotone.
However, reduced expression is not unique due to possibility to commute
letters but this is the only form of non-uniqueness and can be dealt with by
taking the most lexicographically convenient reduced expression.

Idea: as reduced expressions are not unique, suffix means suffix in some
reduced expression. Same with subword. The linking operation needs to be
redefined to account for these new features. New definition is ugly. ..

... but works (experimentally) in all cases
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|
What happens for other choices of 7

The linking operation [, | works for a few other choices of I (e.g.:
equioriented A, ~~ Catalan monoid) but not always. For general choices of
I" one needs to take time priority of local updates into account.

Good news: Mazorchuk's proof generalizes nicely. One may show that all
simplifications from any given word to a reduced expression are monotone.
However, reduced expression is not unique due to possibility to commute
letters but this is the only form of non-uniqueness and can be dealt with by
taking the most lexicographically convenient reduced expression.

Idea: as reduced expressions are not unique, suffix means suffix in some
reduced expression. Same with subword. The linking operation needs to be
redefined to account for these new features. New definition is ugly. ..

... but works (experimentally) in all cases (all [''s with at most 8 vertices
and a few other scattered examples).
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Generalized linking operation

Set [u, x| =[x, u] = u.
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Generalized linking operation

Set [u, x| =[x, u] = u.

Let v =a1a2...an, v =biby... b, be non empty words in the alphabet
V, where V is the set of vertices of a finite acyclic oriented graph.
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Generalized linking operation

Set [u, x| =[x, u] = u.

Let v =a1a2...an, v =biby... b, be non empty words in the alphabet
V, where V is the set of vertices of a finite acyclic oriented graph.

Choose (if there exist some)
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Generalized linking operation

Set [u, x| =[x, u] = u.

Let v =a1a2...an, v =biby... b, be non empty words in the alphabet
V, where V is the set of vertices of a finite acyclic oriented graph.

Choose (if there exist some) the rightmost letter b; of v such that
e b; commutes with all b, j > i;
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Generalized linking operation

Set [u, x| =[x, u] = u.

Let v =a1a2...an, v =biby... b, be non empty words in the alphabet
V, where V is the set of vertices of a finite acyclic oriented graph.

Choose (if there exist some) the rightmost letter b; of v such that
e b; commutes with all b, j > i;

@ no letter in the longest suffix of u not containing b; has an arrow
pointing to b;.
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Generalized linking operation
Set [u, x| =[x, u] = u.

Let v =a1a2...an, v =biby... b, be non empty words in the alphabet
V, where V is the set of vertices of a finite acyclic oriented graph.

Choose (if there exist some) the rightmost letter b; of v such that
e b; commutes with all b, j > i;

@ no letter in the longest suffix of u not containing b; has an arrow
pointing to b;.

Denote by v the word obtained by removing the rightmost occurence of b;
from v (and similarly with u). Then
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Generalized linking operation
Set [u, x| =[x, u] = u.

Let v =a1a2...an, v =biby... b, be non empty words in the alphabet
V, where V is the set of vertices of a finite acyclic oriented graph.

Choose (if there exist some) the rightmost letter b; of v such that
e b; commutes with all b, j > i;

@ no letter in the longest suffix of u not containing b; has an arrow
pointing to b;.

Denote by v the word obtained by removing the rightmost occurence of b;
from v (and similarly with u). Then
e if u contains b;, and b; commutes with all letters in the longest suffix
of u not containing b;, then set [u, v] = [T, V]b;;

e otherwise, set [u, v] = [u, V]b;.
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Generalized linking operation
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Generalized linking operation

If there exists no such b;, then choose the rightmost letter a; of u such
that
@ a; commutes with all a;,j > i
@ no letter in the longest suffix of v not containing a; has an arrow
pointing to a;.
Denote by T the word obtained by removing the rightmost occurence of a;
from v (and similarly with u). Then
e if v contains a;, and a; commutes with all letters in the longest suffix
of v not containing a;, then set [u, v] = [4,V]a;;

@ otherwise, set [u, v] = [T, v]a;.
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Generalized linking operation

If there exists no such b;, then choose the rightmost letter a; of u such
that

@ a; commutes with all a;,j > i
@ no letter in the longest suffix of v not containing a; has an arrow
pointing to a;.
Denote by T the word obtained by removing the rightmost occurence of a;
from v (and similarly with u). Then

e if v contains a;, and a; commutes with all letters in the longest suffix
of v not containing a;, then set [u, v] = [4,V]a;;

@ otherwise, set [u, v] = [T, v]a;.

If there exists no such a;, then set [u, v] = *.
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Questions
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Questions

@ Can one find a canonical combinatorial action of Hecke-Kiselman
monoids on something?
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@ Can one find a canonical combinatorial action of Hecke-Kiselman
monoids on something?

@ Can one set up a universal update system also on oriented graphs with
cycles?
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Questions

@ Can one find a canonical combinatorial action of Hecke-Kiselman
monoids on something?

@ Can one set up a universal update system also on oriented graphs with
cycles?

@ Does Coxeter combinatorics play a role in this setting?
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Questions

@ Can one find a canonical combinatorial action of Hecke-Kiselman
monoids on something?

@ Can one set up a universal update system also on oriented graphs with
cycles?

@ Does Coxeter combinatorics play a role in this setting?

@ Is there a way to recursively compute the order of Hecke-Kiselman
monoids as in the Coxeter setting?

@ Can one prov(id)e a characterization of digraphs inducing finite
Hecke-Kiselman monoids?
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for your attention!!!
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