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Coxeter systems

Coxeter system: combinatorial information contained in a (unoriented)
graph Γ

vertices: generators (of order 2) of a group
edges: relations (e.g., commutation, braid) between generators

One obtains a presentation

〈si | s2i = 1
si sj = sjsi if i and j are not connected by an edge
si sjsi = sjsi sj if i and j are connected by an edge 〉

which yields a group WΓ.

In this talk, everything is simply laced.
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Coxeter monoids

The above presentation can be deformed (in an associative algebra
context) to:

s2i = 1 (si + 1)(si − q) = 0.

One obtains a Z[q±1]-algebra (Iwahori-Hecke) which can be specialized to
complex values of q.

q = 1→ group algebra of the Coxeter group WΓ

generic values of q → generators si do not close under product
q = 0→ monoid algebra of the Coxeter monoid (generated by
ai = −si ) “0-Hecke algebras”, Norton 1979
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Coxeter monoids

The Coxeter monoid has the same order as the Coxeter group (it can be
viewed as a different product on the same set). It also appears as the
Richardson-Springer monoid (when dealing with combinatorics of B-orbits
in spherical varieties).

Coxeter monoids are also known as 0-Hecke monoids.

Knowledge of both the Coxeter group and the Coxeter monoid up to
isomorphism determines the Coxeter system.
“Coxeter groups, Coxeter monoids and the Bruhat order” Kenney 2014
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Quotients of Coxeter monoids

(Quotients of) Coxeter monoids appear in the literature. Examples:

Kiselman’s semigroup and its generalizations
Catalan monoid
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Kiselman’s semigroup
In convexity theory, one may attach to a function f : E → R ∪ {±∞}

c(f ): the largest convex function not exceeding f

l(f ): the largest lower semicontinuous function not exceeding f

m(f ) = f if f > −∞ everywhere; m(f ) ≡ −∞ otherwise
Then c , l ,m are idempotent operators, and satisfy

clc = lcl = lc

cmc = mcm = mc

lml = mlm = ml .

The monoid 〈c , l ,m〉 has at most 18 elements. Indeed exactly 18 when E
is a real infinite-dimensional normed space, and in this case the above
relations provide a presentation.
The Kiselman monoid Kn generalizes the above presentation but admits n
generators.
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Reduced expressions in Kiselman’s semigroups

Kiselman’s semigroup Kn is generated by n idempotents ai , i = 1, . . . , n.

When 1 ≤ i < j ≤ n one has relations aiajai = ajaiaj = aiaj .

It is easy to show that if between two ai only aj , j > i , occur, then one may
delete the rightmost ai (similarly if only lower indices occur, one may
remove the leftmost occurrence).

The only possible reduced expressions are such that between two identical
generators, both higher and lower indices must occur. Using some old
results on confluence (Newman 1942; also Huet 1980) one may show that

Such words are all reduced
All choices of cancellations from a given word lead to the same (hence
unique) reduced expression. (Kudryavtseva, Mazorchuk 2009)
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Cardinality of Kiselman’s semigroups

Kn always has finitely many elements, but its cardinality is not well
understood. (A125625: 1, 2, 5, 18, 115, 1710, 83973...) it grows quickly!

A closed or recursive formula for the cardinality of Kn is missing
The only concrete estimate (Kudryavtseva, Mazorchuk 2009) in the
literature is |Kn| ≤ nL(n) where

L(n) =

{
2k+1 − 2 if n = 2k
3 · 2k − 2 if n = 2k + 1

Indeed, log |Kn| ' c2n/2, separately for even and odd values of n.
(joint with Stella)
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Catalan monoid

Order decreasing, order preserving functions f : {1, . . . , n} → {1, . . . , n}
form a monoid Cn with respect to composition.

The cardinality of Cn is given by the n-th Catalan number.

Cn has been considered in computer science in the context of hashing and
storing/retrieval of information.

Cn = 〈ai , i = 1, . . . , n − 1 | a2i = ai

aiaj = ajai if |i − j | > 1
aiai+1ai = ai+1aiai+1 = aiai+1〉

Here ai is the function mapping i + 1 to i and fixing all other elements.
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Hecke-Kiselman monoids
A general setting generalizing all above examples is that of Kiselman
quotients of 0-Hecke monoids or Hecke-Kiselman monoids, for short.

The combinatorial informations is contained in a digraph (with both
oriented and unoriented edges) Γ yielding a presentation of a monoid
HKΓ:
one has an idempotent generator ai for each vertex i ;
aiajai = ajaiaj if i and j are connected by an unoriented edge = side,
aiajai = ajaiaj = aiaj if there is an oriented edge = arrow, connecting
i to j .
aiaj = ajai if i and j are not connected,

There is at most one edge between any two vertices.

Reduced expressions are as before, once one takes commutation relations
into account. (joint with Aragona, 2020)
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Finiteness of Hecke-Kiselman monoids

Commutation ab = ba implies aba = bab = ab, thus HKΓ′ is a quotient of
HKΓ if Γ′ if obtained from Γ by:

removing an arrow
making a side into an arrow
removing a side

If Γ′ is obtained from Γ by means of a finite sequence of such moves, and
HKΓ is finite, then HKΓ′ must be finite too. (as it is a quotient)

If Γ has no arrows, HKΓ is finite iff Γ is a finite disjoint union of finite
Dynking diagrams (simply laced =⇒ ADE classification).

Hence, if HKΓ is finite, then Γ is obtained by adding arrows to a finite
disjoint union of ADE graphs. The converse is false, and apparently very
involved.
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Update systems on graphs
Let Γ be an oriented graph with at most one arrow between any two
vertices. An update system on Γ is a choice of:

a set Si of local states for each vertex i ;
a local update function fi :

∏
i→j Sj → Si .

If S =
∏

i Si is the set of global states, each fi induces a global update
function Fi : S → S given by

(Fi (s))k =

{
sk if k 6= i

fi (sj , i → j) if k = i

Every word in the vertices of Γ yields a corresponding composition of the
Fi .

The image of the natural homomorphism F (V )→ End(S) is the dynamics
monoid of the update system.
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A finiteness argument

If Γ has no self-loops, then every Fi is idempotent. Henceforth: no
self-loops!
If i and j are not connected, then Fi and Fj commute.
If i → j , BUT j 6→ i , then FiFjFi = FjFiFj = FiFj .

If Γ has no cycles of length 1 or 2, then the natural homomorphism
F (V )→ End(S) factor through HKΓ.

Example: Cycn = Z/nZ with arrows i → i + 1; Si = Z, for all i ;
fi (si+1) = si+1 + 1. Then powers of F1F2 . . .Fn are all distinct.

Consequently HKCycn is infinite. We learn that if HKΓ is finite, it contains
no oriented cycle.
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Finiteness of HKΓ

What do we know of Γ if HKΓ is finite?

Γ has no oriented (or orientable) cycles
If Γ has only unoriented edges, then it is a disjoint union of finite
Dynkin graphs
If Γn is the graph with vertices v1, . . . , vn connected by arrows vi → vj
iff i < j , then HKΓn = Kn is finite
If Γ has only arrows, HKΓ is finite iff Γ is acyclic (if it is acyclic, it is a
quotient of some HKΓn , which is finite)

The mixed case is complicated and exhibits not well understood
interactions between ADE components and arrows between them:
acyclicity and ADE components do not suffice to ensure finiteness.
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Finiteness of Hecke-Kiselman monoids

There is a unique acyclic digraph on four vertices with ADE connected
components which yields an infinite Hecke-Kiselman monoid:

a //

  @
@@

@@
@@

c

b //

>>~~~~~~~~
d .

This is proved by making it act “transitively” on an infinite set.

joint with Aragona 2013

A. D’Andrea (Sapienza) HK-monoids Brussels 2022 15 / 26



A1

C0
c��

a
��~~

B0

c
��

boo A0

c
��

aoo b // B1

c
��

a // C1
c��

b
��@

@

X F0a
oo

b��

d // E0
a //

b

��

X X E1
boo

a

��

F1 b
//

a ��

doo X

C3
d��

b
��~~

B3
aoo

d
��

A3
boo

d
��

a
%%LL

LLL
L0a

yyrrr
rr b

%%LL
LLL

A2
a //

d
��

b
yyrrr

rr
B2

b //

d
��

C2
d��

a
��@

@

X F3b
oo c //

a��
E3

b //

a

��

X P0

b
��

L1 P1

a
��

X E2
aoo

b

��

F2 a
//coo

b ��
X

C4
c��

a
����

B4

c
��

boo A4
aoo

b
%%LL

LLL

c
��

L3b
wwooo

ooo

a 99rrrrr
L2

beeLLLLL

a
''OO

OOO
O A5

b //
a
yyrrr

rr

c
��

B5

c
��

a // C5
c��

b
��?

?

X F4a
oo d //

b��
E4

a //

b

��

X P3

a
��

Q0

a
��

Q1

b
��

P2

b
��

X E5
boo

a

��

F5 b
//doo

a ��
X

B7

d
��

oo A7
boo

a
%%LL

LLL

d
��

L4a
wwooo

ooo

b 99rrrrr
L5

aeeLLLLL

b
''OO

OOO
O A6

a //
b
yyrrr

rr

d
��

B6

d
��

//

P4

b
��

Q3

b
��

X X Q2

a
��

P5

a
��

A8oo
b
%%LL

LLL

��

L7b
wwooo

ooo

a 99rrrrr
L6

beeLLLLL

a
''OO

OOO
O A9 //

a
yyrrr

rr

��
P7

a
��

Q4

a
��

X X Q5

b
��

P6

b��

>> ``

Q7

b��

X X Q6
a
��

X X

FIGURE 1



Is universal dynamics possible?

Is it possible to set up an update system on the graph Γ so that
HKΓ → End(S) be injective?

We already know that maps Fi satisfy the Hecke-Kiselman relations, but
there might be further relations we failed to spot so far.

In order to show there are no further universal relation is to set up an
update system on Γ in which the Fi generate a monoid isomorphic to HKΓ.

Idea: set up local functions that (combinatorially?) recover a word (=
update sequence) inducing the information found on outward vertices.
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Kiselman case

The most convenient case to treat is when Γ = Γn is the complete (acyclic,
ordered) graph. It is convenient since:

one has an explicit characterization of reduced words in HKΓn = Kn;
simplifications from non reduced to reduced words are always
monotone: one may simplify any given word to its reduced form by a
sequence of length-reducing steps and. . .
. . . every such sequence ends on the same reduced word.
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A linking operation

If u, v ∈ F (A) are words in the alphabet A, we define [u, v ] to be the
shortest word that

has v as a suffix
admits u as a subword

How to compute [u, v ]:
Factor u = u1u2 so that u2 is longest suffix of u which is a subword of
v .
Then [u, v ] = u1v .

E.g.: [abcab, babc] = abcbabc .

The product [ , ] is neither commutative nor associative. It seems to lack
good properties, but solves the universal dynamics problem for the graph
Γn.
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A universal update system on Γn
On the graph Γn set Si = F (ai , . . . , an) and define

fi (si+1, . . . , sn) = ai [sn, . . . [si+3, [si+2, si+1]] . . . ].

Teorema
Let w ∈ F (a1, . . . , an). If Fw (1, 1, . . . , 1) = (s1, s2, . . . , sn), then
[sn, . . . [s3, [s2, s1]] . . . ] is the (unique) reduced expression of w in
HKΓn = Kn.

The dynamical complexity of Kn is captured by symbolic-combinatorial
properties of the linking operation.

Warning! One obtains a reduced expression WHEN the state (s1, . . . , sn) is
reachable from (1, 1, . . . , 1), but not in general.

joint with Collina 2015
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A universal update system on Γn

We have reached the state

abdc bcd cd d

which, according to the theorem, is induced by the word

[d , [cd , [bcd , abdc]]] = [d , [cd , bcabdc]] = [d , bcabdc] = bcabdc ,

as we indeed computed.
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What happens for other choices of Γ?

The linking operation [ , ] works for a few other choices of Γ (e.g.:
equioriented An  Catalan monoid) but not always. For general choices of
Γ one needs to take time priority of local updates into account.

Good news: Mazorchuk’s proof generalizes nicely. One may show that all
simplifications from any given word to a reduced expression are monotone.
However, reduced expression is not unique due to possibility to commute
letters but this is the only form of non-uniqueness and can be dealt with by
taking the most lexicographically convenient reduced expression.

Idea: as reduced expressions are not unique, suffix means suffix in some
reduced expression. Same with subword. The linking operation needs to be
redefined to account for these new features. New definition is ugly. . .

. . . but works (experimentally) in all cases (all Γ’s with at most 8 vertices
and a few other scattered examples).

A. D’Andrea (Sapienza) HK-monoids Brussels 2022 21 / 26



What happens for other choices of Γ?

The linking operation [ , ] works for a few other choices of Γ (e.g.:
equioriented An  Catalan monoid) but not always. For general choices of
Γ one needs to take time priority of local updates into account.

Good news: Mazorchuk’s proof generalizes nicely. One may show that all
simplifications from any given word to a reduced expression are monotone.
However, reduced expression is not unique due to possibility to commute
letters but this is the only form of non-uniqueness and can be dealt with by
taking the most lexicographically convenient reduced expression.

Idea: as reduced expressions are not unique, suffix means suffix in some
reduced expression. Same with subword. The linking operation needs to be
redefined to account for these new features. New definition is ugly. . .

. . . but works (experimentally) in all cases (all Γ’s with at most 8 vertices
and a few other scattered examples).

A. D’Andrea (Sapienza) HK-monoids Brussels 2022 21 / 26



What happens for other choices of Γ?

The linking operation [ , ] works for a few other choices of Γ (e.g.:
equioriented An  Catalan monoid) but not always. For general choices of
Γ one needs to take time priority of local updates into account.

Good news: Mazorchuk’s proof generalizes nicely. One may show that all
simplifications from any given word to a reduced expression are monotone.
However, reduced expression is not unique due to possibility to commute
letters but this is the only form of non-uniqueness and can be dealt with by
taking the most lexicographically convenient reduced expression.

Idea: as reduced expressions are not unique, suffix means suffix in some
reduced expression. Same with subword. The linking operation needs to be
redefined to account for these new features. New definition is ugly. . .

. . . but works (experimentally) in all cases (all Γ’s with at most 8 vertices
and a few other scattered examples).

A. D’Andrea (Sapienza) HK-monoids Brussels 2022 21 / 26



What happens for other choices of Γ?

The linking operation [ , ] works for a few other choices of Γ (e.g.:
equioriented An  Catalan monoid) but not always. For general choices of
Γ one needs to take time priority of local updates into account.

Good news: Mazorchuk’s proof generalizes nicely. One may show that all
simplifications from any given word to a reduced expression are monotone.
However, reduced expression is not unique due to possibility to commute
letters but this is the only form of non-uniqueness and can be dealt with by
taking the most lexicographically convenient reduced expression.

Idea: as reduced expressions are not unique, suffix means suffix in some
reduced expression. Same with subword. The linking operation needs to be
redefined to account for these new features. New definition is ugly. . .

. . . but works (experimentally) in all cases (all Γ’s with at most 8 vertices
and a few other scattered examples).

A. D’Andrea (Sapienza) HK-monoids Brussels 2022 21 / 26



What happens for other choices of Γ?

The linking operation [ , ] works for a few other choices of Γ (e.g.:
equioriented An  Catalan monoid) but not always. For general choices of
Γ one needs to take time priority of local updates into account.

Good news: Mazorchuk’s proof generalizes nicely. One may show that all
simplifications from any given word to a reduced expression are monotone.
However, reduced expression is not unique due to possibility to commute
letters but this is the only form of non-uniqueness and can be dealt with by
taking the most lexicographically convenient reduced expression.

Idea: as reduced expressions are not unique, suffix means suffix in some
reduced expression. Same with subword. The linking operation needs to be
redefined to account for these new features. New definition is ugly. . .

. . . but works (experimentally) in all cases (all Γ’s with at most 8 vertices
and a few other scattered examples).

A. D’Andrea (Sapienza) HK-monoids Brussels 2022 21 / 26



What happens for other choices of Γ?

The linking operation [ , ] works for a few other choices of Γ (e.g.:
equioriented An  Catalan monoid) but not always. For general choices of
Γ one needs to take time priority of local updates into account.

Good news: Mazorchuk’s proof generalizes nicely. One may show that all
simplifications from any given word to a reduced expression are monotone.
However, reduced expression is not unique due to possibility to commute
letters but this is the only form of non-uniqueness and can be dealt with by
taking the most lexicographically convenient reduced expression.

Idea: as reduced expressions are not unique, suffix means suffix in some
reduced expression. Same with subword. The linking operation needs to be
redefined to account for these new features. New definition is ugly. . .

. . . but works (experimentally) in all cases (all Γ’s with at most 8 vertices
and a few other scattered examples).

A. D’Andrea (Sapienza) HK-monoids Brussels 2022 21 / 26



What happens for other choices of Γ?

The linking operation [ , ] works for a few other choices of Γ (e.g.:
equioriented An  Catalan monoid) but not always. For general choices of
Γ one needs to take time priority of local updates into account.

Good news: Mazorchuk’s proof generalizes nicely. One may show that all
simplifications from any given word to a reduced expression are monotone.
However, reduced expression is not unique due to possibility to commute
letters but this is the only form of non-uniqueness and can be dealt with by
taking the most lexicographically convenient reduced expression.

Idea: as reduced expressions are not unique, suffix means suffix in some
reduced expression. Same with subword. The linking operation needs to be
redefined to account for these new features. New definition is ugly. . .

. . . but works (experimentally) in all cases (all Γ’s with at most 8 vertices
and a few other scattered examples).

A. D’Andrea (Sapienza) HK-monoids Brussels 2022 21 / 26



Generalized linking operation

Set [u, ?] = [?, u] = u.

Let u = a1a2 . . . an, v = b1b2 . . . bm be non empty words in the alphabet
V , where V is the set of vertices of a finite acyclic oriented graph.

Choose (if there exist some) the rightmost letter bi of v such that
bi commutes with all bj , j > i ;
no letter in the longest suffix of u not containing bi has an arrow
pointing to bi .

Denote by v the word obtained by removing the rightmost occurence of bi
from v (and similarly with u). Then

if u contains bi , and bi commutes with all letters in the longest suffix
of u not containing bi , then set [u, v ] = [u, v ]bi ;
otherwise, set [u, v ] = [u, v ]bi .
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Generalized linking operation

If there exists no such bi , then choose the rightmost letter ai of u such
that

ai commutes with all aj , j > i ;
no letter in the longest suffix of v not containing ai has an arrow
pointing to ai .

Denote by u the word obtained by removing the rightmost occurence of ai
from v (and similarly with u). Then

if v contains ai , and ai commutes with all letters in the longest suffix
of v not containing ai , then set [u, v ] = [u, v ]ai ;
otherwise, set [u, v ] = [u, v ]ai .

If there exists no such ai , then set [u, v ] = ?.
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Questions

Can one find a canonical combinatorial action of Hecke-Kiselman
monoids on something?
Can one set up a universal update system also on oriented graphs with
cycles?
Does Coxeter combinatorics play a role in this setting?
Is there a way to recursively compute the order of Hecke-Kiselman
monoids as in the Coxeter setting?
Can one prov(id)e a characterization of digraphs inducing finite
Hecke-Kiselman monoids?
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