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Background Group rings

Primeness of group rings

Theorem (Connell, 1963)

Let G be a group and let R be a unital ring. TFAAE:

(i) The group ring R[G] is prime.

(ii) R is prime, and G has no non-trivial �nite normal subgroup.
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Background Strongly group-graded rings

Recall: Group-graded rings

From now on, G denotes an arbitrary group.

De�nition

A ring S is said to be G-graded if

S = ⊕g∈GSg

SgSh ⊆ Sgh for all g, h ∈ G.

De�nition

A G-graded ring S is strongly G-graded if

SgSh = Sgh for all g, h ∈ G.
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Background Strongly group-graded rings

Primeness of unital strongly graded rings

Theorem (Passman, 1984)

Suppose that S is a unital and strongly G-graded ring. Then S is not

prime if and only if there exist:

(i) subgroups N ◁H ⊆ G with N �nite,

(ii) an H-invariant ideal I of Se such that IxI = {0} for every x ∈ G \H,

and

(iii) nonzero H-invariant ideals Ã, B̃ of SN such that Ã, B̃ ⊆ ISN and

ÃB̃ = {0}.

Notation

SN := ⊕n∈NSn

Ix := Sx−1ISx
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Background Leavitt path algebras

The history of Leavitt path algebras

1962: Leavitt algebras

1977: Cuntz C*-algebras

1998: Graph C*-algebras

2005: Leavitt path algebras

Recommended survey article

G. Abrams,
Leavitt path algebras: the �rst decade,
Bull. Math. Sci. 5 (2015), no. 1, 59�120.
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Background Leavitt path algebras

Leavitt path algebras

De�nition

Let E = (E0, E1) be a directed graph and let R be a unital ring. The
Leavitt path algebra LR(E) is the free associative R-algebra generated by
the symbols {v | v ∈ E0} ∪ {f | f ∈ E1} ∪ {f∗ | f ∈ E1} subject to the
following relations:
(a) vw = δv,wv for all v, w ∈ E0;
(b) s(f)f = fr(f) = f and r(f)f∗ = f∗s(f) = f∗, for every f ∈ E1;
(c) f∗f ′ = δf,f ′r(f) for all f, f ′ ∈ E1;
(d)

∑
f∈E1,s(f)=v ff

∗ = v for every v ∈ E0 for which 0 < |s−1(v)| < ∞.

We let every element of R commute with the generators.

Remark (A natural Z-grading on LR(E))

Put: deg(v) = 0, deg(f) = 1, and deg(f∗) = −1 for all v and f .
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Background Leavitt path algebras

Leavitt path algebras are partial skew group algebras!

Theorem (Goncalves & Royer, 2014)

Let K be a �eld and let E = (E0, E1) be a directed graph. Then

LK(E) ∼= D(X)⋊α F as K-algebras.

Explanation:

F is the free group generated by E1.

D(X) is a certain subalgebra of the function K-algebra on the set of
sinks, in�nite paths and �nite paths ending in sinks.
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Background Leavitt path algebras

Primeness of Leavitt path algebras

De�nition

A directed graph E is said to satisfy condition (MT-3) if for all u, v ∈ E0,
there exist w ∈ E0 and paths from u to w and from v to w.

Theorem (Larki, 2015)

Suppose that E is a directed graph and that R is a unital commutative

ring. TFAAE:

(i) The Leavitt path algebra LR(E) is prime.

(ii) R is prime, and E satis�es condition (MT-3).
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Nearly epsilon-strongly graded rings

Two key properties of unital strongly graded rings

De�nition

A G-graded ring S is said to be symmetrically G-graded if

SgSg−1Sg = Sg for every g ∈ G.

Observation

Suppose that S is a unital and strongly G-graded ring. Then:

S is symmetrically G-graded.

SgSg−1 is a unital ring for every g ∈ G (because SgSg−1 = Se).
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Nearly epsilon-strongly graded rings

Epsilon-strongly graded rings

De�nition (Pinedo, Nystedt, Ö)

A G-graded ring S is said to be epsilon-strongly G-graded if the following
assertions hold:

S is symmetrically G-graded

SgSg−1 is a unital ring for every g ∈ G.

Remark

An epsilon-strongly G-graded ring is always unital.

Examples

Every unital strongly G-graded ring.

Every Z-graded Leavitt path algebra LR(E), when E is a �nite graph.

Every G-graded unital partial crossed product R⋊w
α G.
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Nearly epsilon-strongly graded rings

Nearly epsilon-strongly graded rings

De�nition (Nystedt, Ö)

A G-graded ring S is said to be nearly epsilon-strongly G-graded if the
following assertions hold:

S is symmetrically G-graded

SgSg−1 is an s-unital ring for every g ∈ G.

Examples

Every epsilon-strongly G-graded ring.

Every Z-graded Leavitt path algebra LR(E), for any graph E.

Observation (Lännström, 2021)

Every graded von Neumann regular ring is nearly epsilon-strongly graded.
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The main result

Yet another de�nition

De�nition

A G-graded ring S is said to be non-degenerately G-graded if

for every g ∈ G, and every nonzero s ∈ Sg, we have sSg−1 ̸= {0} and
Sg−1s ̸= {0}.

Remark

A nearly epsilon-strongly G-graded ring S is non-degenerately G-graded.

Proof (50%).

Take s ∈ Sg and suppose that Sg−1s = {0}.
Then s =

∑n
i=1 aibici where ai, ci ∈ Sg and bi ∈ Sg−1 .

Let u ∈ SgSg−1 be an s-unit for {a1b1, . . . , anbn}.
s =

∑n
i=1 aibici =

∑n
i=1(uaibi)ci = us ∈ SgSg−1s = {0}.
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The main result

Theorem (Lännström, Lundström, Ö, Wagner)

Suppose that G is a group and that S is a G-graded ring. Consider the following �ve

assertions:

(a) S is not prime.

(b) There exist:

(i) subgroups N ◁H ⊆ G with N �nite,
(ii) an H-invariant ideal I of Se such that IxI = {0} for every x ∈ G \H,
(iii) nonzero ideals Ã, B̃ of SN such that Ã, B̃ ⊆ ISN and ÃSHB̃ = {0}.

(c) There exist:

(i) subgroups N ◁H ⊆ G with N �nite,
(ii) an H-invariant ideal I of Se such that IxI = {0} for every x ∈ G \H,
(iii) nonzero H-invariant ideals Ã, B̃ of SN such that Ã, B̃ ⊆ ISN and

ÃSHB̃ = {0}.
The following assertions hold:

(1) If S is non-degenerately G-graded, then (c)=⇒(b)=⇒(a).

(2) If S is nearly epsilon-strongly G-graded, then (a)⇐⇒(b)⇐⇒(c).
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Comments on the proof

The �easy� direction

Proposition

Suppose that S is non-degenerately G-graded and that there exist

(i) subgroups N ◁H ⊆ G with N �nite,

(ii) an H-invariant ideal I of Se such that IxI = {0} for every x ∈ G \H,

and

(iii) nonzero ideals Ã, B̃ of SN such that Ã, B̃ ⊆ ISN , and ÃSHB̃ = {0}.
Then S is not prime.

Proof (sketch).

Consider the ideals A := SÃS and B := SB̃S of S.

By non-degeneracy of the grading, A and B are both nonzero.

One can show that ÃSgB̃ = {0} for every g ∈ G. From this we get
that AB = {0}.
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Comments on the proof

The �hard� direction

De�nition

Let S be a G-graded ring. An NP-datum for S is a quintuple
(H,N, I, Ã, B̃) with the following three properties:

(NP1) H is a subgroup of G, and N is a �nite normal subgroup of H,

(NP2) I is a nonzero H-invariant ideal of Se such that IxI = {0} for every
x ∈ G \H, and

(NP3) Ã, B̃ are nonzero ideals of SN such that Ã, B̃ ⊆ ISN , and ÃB̃ = {0}.
An NP-datum (H,N, I, Ã, B̃) is said to be balanced if it satis�es the
following property:

(NP4) Ã, B̃ are nonzero ideals of SN such that Ã, B̃ ⊆ ISN , and
ÃSHB̃ = {0}.
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Comments on the proof

The �hard� direction

Remark

If S is nearly epsilon-strongly G-graded, then (NP4) implies (NP3).

Remark

Suppose that S is s-unital strongly G-graded. An NP-datum
(H,N, I, Ã, B̃) for S is necessarily balanced whenever Ã or B̃ is
H-invariant. Indeed, suppose that Ã is H-invariant. For any h ∈ H, we
get that

ÃShB̃ = SeÃShB̃ = ShSh−1ÃShB̃ ⊆ ShÃB̃ = {0}.

The proof of the case when B̃ is H-invariant is analogous.
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Comments on the proof

The �hard� direction

Proposition

Suppose that Se is not G-prime. Then S has a balanced NP-datum

(H,N, I, Ã, B̃) for which Ã, B̃ are H-invariant.

Proof.

There are nonzero G-invariant ideals Ã, B̃ of Se such that ÃB̃ = {0}.
We claim that (G, {e}, Se, Ã, B̃) is a balanced NP-datum.

Conditions (NP1), (NP2) and (NP3) are trivially satis�ed.

We now check condition (NP4).
Take x ∈ G. Seeking a contradiction, suppose that ÃSxB̃ ̸= {0}.
Note that ÃSxB̃ ⊆ Sx. By non-degeneracy of the G-grading,
Sx−1 · ÃSxB̃ ̸= {0}. Since Ã is G-invariant, we get that
Sx−1ÃSxB̃ ⊆ ÃB̃ = {0}, which is a contradiction. Note that,
trivially, Ã, B̃ are both G-invariant.
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Comments on the proof

The �hard� direction

Proposition

Suppose that S is nearly epsilon-strongly G-graded. If S is not prime, then

it has a balanced NP-datum (H,N, I, Ã, B̃) for which Ã, B̃ are

H-invariant.

Comment on the proof.

Case 1 (Se is not G-semiprime): Previous slide.
Case 2 (Se is G-semiprime): Requires long (≈ 15 pages) and technical
arguments...
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Applications Leavitt path algebras

Primeness of Leavitt path algebras

Theorem (Lännström, Lundström, Ö, Wagner)

Suppose that E is a directed graph and that R is a unital ring. TFAAE:

(i) The Leavitt path algebra LR(E) is prime.

(ii) R is prime, and E satis�es condition (MT-3).
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Applications Partial crossed products

Primeness of partial crossed products

Remark

Let R ⋆wα G be a unital partial crossed product coming from a unital
twisted partial action ({αg}g∈G, {Dg}g∈G, {wg,h}(g,h)∈G×G).

An ideal I of R is G-invariant if αg(I ∩Dg−1) ⊆ I for every g ∈ G.

R is G-prime if there are no nonzero G-invariant ideals I, J of R such
that IJ = {0}.

Theorem (Lännström, Lundström, Ö, Wagner)

Suppose that G is torsion-free and that R ⋆wα G is a unital partial crossed

product. Then R ⋆wα G is prime if and only if R is G-prime.
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Applications s-unital group rings

The s-unital Connell's theorem

Let R be an s-unital ring. We de�ne the group ring R[G] as the set of all
formal sums

∑
x∈G rxδx where δx is a symbol for each x ∈ G and rx ∈ R

is zero for all but �nitely many x ∈ G. Addition on R[G] is de�ned in the
natural way and multiplication is de�ned by linearly extending the rules
rδxr

′δy = rr′δxy, for all r, r′ ∈ R and x, y ∈ G.

Theorem (Lännström, Lundström, Ö, Wagner)

Let R be an s-unital ring. TFAAE:

(i) The group ring R[G] is prime.

(ii) R is prime, and G has no non-trivial �nite normal subgroup.

Johan Öinert (BTH) Primeness of group-graded rings 2022-09-13 28 / 34



Applications s-unital group rings

Reference

D. Lännström, P. Lundström, J. Öinert and S. Wagner,

Prime group graded rings with applications to partial crossed products and

Leavitt path algebras,

arXiv:2105.09224 [math.RA]
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Applications s-unital group rings

The location of Blekinge Institute of Technology
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Applications s-unital group rings
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Applications s-unital group rings

The location of Blekinge Institute of Technology
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Applications s-unital group rings

The campus in Karlskrona
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Applications s-unital group rings

The end

THANK YOU FOR YOUR ATTENTION!
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