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Background Group rings

Primeness of group rings

Theorem (Connell, 1963)
Let G be a group and let R be a unital ring. TFAAE:
@ The group ring R[G] is prime.

@ R is prime, and G has no non-trivial finite normal subgroup.
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Strongly group-graded rings
Recall: Group-graded rings

From now on, GG denotes an arbitrary group.
Definition
A ring S is said to be G-graded if

o S - @gEGSg

® 5,5y C Syp forall g,h € G.

Definition
A G-graded ring S is strongly G-graded if
® S¢Sp = Sy forall g,h € G.
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EECSICTLLIN Strongly group-graded rings

Primeness of unital strongly graded rings

Theorem (Passman, 1984)

Suppose that S is a unital and strongly G-graded ring. Then S is not
prime if and only if there exist:

@ subgroups N <« H C G with N finite,

@ an H-invariant ideal I of S, such that I*1 = {0} for every x € G\ H,
and

@ nonzero H-invariant ideals A, B of Sy such that A, B C ISy and
AB = {0}.

Notation
o SN = @neNSn
o [":=S5,11S,
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Leavitt path algebras
The history of Leavitt path algebras

1962: Leavitt algebras
1977: Cuntz C*-algebras
1998: Graph C*-algebras
2005: Leavitt path algebras

Recommended survey article

G. Abrams,
Leavitt path algebras: the first decade,
Bull. Math. Sci. 5 (2015), no. 1, 59-120.
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Leavitt path algebras
Leavitt path algebras

Definition
Let E = (E°, E') be a directed graph and let R be a unital ring. The
Leavitt path algebra Lr(E) is the free associative R-algebra generated by

the symbols {v |v € EC}U{f | f € E'}U{f*| f € E'} subject to the
following relations:

Q@ vw = &y for all v,w € EY;

Q@ s(f)f =[fr(f)=fand r(f)f* = f*s(f) = f* forevery f € E;
Q f*f’ = 5f7f/7"(f) for all f, f/ S El;

Q@ D repio(p)mn [T =v forevery v € EY for which 0 < [s71(v)] < oo.
We let every element of R commute with the generators.

Remark (A natural Z-grading on Lr(E))
Put: deg(v) =0, deg(f) =1, and deg(f*) = —1 for all v and f.
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Background Leavitt path algebras

Leavitt path algebras are partial skew group algebras!

Theorem (Goncalves & Royer, 2014)
Let K be a field and let E = (E°, E') be a directed graph. Then
Ly (F) = D(X) x4 F as K-algebras.
Explanation:
o [ is the free group generated by E'.

@ D(X) is a certain subalgebra of the function K-algebra on the set of
sinks, infinite paths and finite paths ending in sinks.
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Background Leavitt path algebras

Primeness of Leavitt path algebras

Definition

A directed graph E is said to satisfy condition (MT-3) if for all u,v € E°,
there exist w € E° and paths from u to w and from v to w.

Theorem (Larki, 2015)

Suppose that E is a directed graph and that R is a unital commutative
ring. TFAAE:

@ The Leavitt path algebra Lr(FE) is prime.
@ R is prime, and E satistfies condition (MT-3).
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Nearly epsilon-strongly graded rings

© Nearly epsilon-strongly graded rings
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Two key properties of unital strongly graded rings

Definition
A G-graded ring S is said to be symmetrically G-graded if
® 548,18, =S, for every g € G.

Observation
Suppose that S is a unital and strongly G-graded ring. Then:

@ S is symmetrically G-graded.

® Sy8,-1 is a unital ring for every g € G (because S;S,-1 = S¢).
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Epsilon-strongly graded rings

Definition (Pinedo, Nystedt, O)

A G-graded ring S is said to be epsilon-strongly G-graded if the following
assertions hold:

@ S is symmetrically G-graded
@ SyS,-1 is a unital ring for every g € G.

Remark

An epsilon-strongly G-graded ring is always unital.

Examples
@ Every unital strongly G-graded ring.

o Every Z-graded Leavitt path algebra Li(E), when E is a finite graph.
e Every G-graded unital partial crossed product R x¥ G.
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Nearly epsilon-strongly graded rings

Definition (Nystedt, O)

A G-graded ring S is said to be nearly epsilon-strongly G-graded if the
following assertions hold:

@ S is symmetrically G-graded

@ SyS,-1 is an s-unital ring for every g € G.

Examples
@ Every epsilon-strongly G-graded ring.
e Every Z-graded Leavitt path algebra Lr(FE), for any graph E.

Observation (Lannstrém, 2021)

Every graded von Neumann regular ring is nearly epsilon-strongly graded.
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The main result

© The main result
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The main result

Yet another definition

Definition
A G-graded ring S is said to be non-degenerately G-graded if
o for every g € G, and every nonzero s € S, we have sS -1 # {0} and

Sg-15 # {0}.

Remark
A nearly epsilon-strongly G-graded ring S is non-degenerately G-graded.

Proof (50%).
o Take s € S, and suppose that S,-1s = {0}.
© Then s =3 " a;bic; where a;,c; € Sy and b; € Sj-1.
o Let u € SyS,-1 be an s-unit for {a1by,. .., anb,}.
o 5= 1" abic; = Y i (uagb;)c; = us € SyS,-15 = {0}.
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The main result

Theorem (L&nnstrém, Lundstrém, O, Wagner)
Suppose that G is a group and that S is a G-graded ring. Consider the following five
assertions:
@ S is not prime.
Q There exist:
@ subgroups N << H C G with N finite,

@ an H-invariant ideal I of S, such that I*1 = {0} for every x € G\ H,
@ nonzero ideals A, B of Sx such that A, B C ISy and ASyB = {0}.

@ There exist:
@ subgroups N <« H C G with N finite,
@ an H-invariant ideal I of S, such that I"I = {0} for every x € G\ H,

@ nonzero H-invariant ideals fl, B of SN such that fl, B C ISy and
ASyB ={0}.

The following assertions hold:
@ IS is non-degenerately G-graded, then (c)=(b)=-(a).
@ If S is nearly epsilon-strongly G-graded, then (a)<=(b)<=(c).
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Comments on the proof
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Comments on the proof

The "easy” direction

Proposition

Suppose that S is non-degenerately G-graded and that there exist

@ subgroups N <« H C G with N finite,

@ an H-invariant ideal I of S, such that I*I = {0} for every x € G\ H,
and

@ nonzero ideals A, B of Sy such that A, B C ISy, and ASyB = {0}.

Then S is not prime.

Proof (sketch).

Consider the ideals A := SAS and B := SBS of S.
@ By non-degeneracy of the grading, A and B are both nonzero.

o One can show that AS,B = {0} for every g € G. From this we get
that AB = {0}.
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The "hard” direction

Definition
Let S be a G-graded ring. An NP-datum for S is a quintuple
(H,N,I, A, B) with the following three properties:

(NP1) H is a subgroup of GG, and N is a finite normal subgroup of H,

(NP2) I'is a nonzero H-invariant ideal of S, such that I*I = {0} for every
x € G\ H, and

(NP3) A, B are nonzero ideals of Sy such that A, B C ISy, and AB = {0}.
An NP-datum (H, N, I, A, B) is said to be balanced if it satisfies the
following property:

(NP4) /:1,3 are nonzero ideals of Sy such that A,B C ISy, and

ASyB = {0}.
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The "hard” direction

Remark
If S is nearly epsilon-strongly G-graded, then (NP4) implies (NP3).

Remark

Suppose that S is s-unital strongly G-graded. An NP-datum

(H,N,I, A, B) for S is necessarily balanced whenever A or B is
H-invariant. Indeed, suppose that A is H-invariant. For any h € H, we
get that

ASyB = S, AS,B = S,5),-1AS,B C S,AB = {0}.

The proof of the case when B is H-invariant is analogous.
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The "hard” direction

Proposition

Suppose that S, is not G-prime. Then S has a balanced NP-datum
(H,N,I,A,B) for which A, B are H-invariant.

Proof.

o There are nonzero G-invariant ideals A, B of S, such that AB = {0}.
o We claim that (G, {e}, Se, A4, B) is a balanced NP-datum.
e Conditions (NP1), (NP2) and (NP3) are trivially satisfied.

@ We now check condition (NP4).
Take 2 € G. Seeking a contradiction, suppose that AS, B {0}.
Note that AS,B C S,. By non-degeneracy of the G-grading,
S,-1-AS,B # {0}. Since A is G-invariant, we get that
S,-1AS,B C AB = {0}, which is a contradiction. Note that,

trivially, fl,é are both G-invariant.

1
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The "hard” direction

Proposition

Suppose that S is nearly epsilon-strongly G-graded. If S is not prime, then
it has a balanced NP-datum (H, N, I, A, B) for which A, B are
H-invariant.

Comment on the proof.

Case 1 (Sc is not G-semiprime): Previous slide.

Case 2 (S, is G-semiprime): Requires long (=~ 15 pages) and technical
arguments... L]
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Applications

© Applications
@ Leavitt path algebras
@ Partial crossed products
@ s-unital group rings
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Applications Leavitt path algebras

Primeness of Leavitt path algebras

Theorem (Lannstrém, Lundstrom, O, Wagner)

Suppose that E is a directed graph and that R is a unital ring. TFAAE:
@ The Leavitt path algebra Lr(FE) is prime.

@ R is prime, and E satistfies condition (MT-3).
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Applications Partial crossed products

Primeness of partial crossed products

Remark

Let R +¥ G be a unital partial crossed product coming from a unital

twisted partial action ({ag}sec, {Dglgec {Wg,n}(g,n)eaxa)-
® Anideal I of R is G-invariant if ag(I N Dy-1) C I for every g € G.

@ R is G-prime if there are no nonzero G-invariant ideals I, J of R such
that 1J = {0}.

Theorem (Lannstrém, Lundstrom, O, Wagner)

Suppose that G is torsion-free and that R x" G is a unital partial crossed
product. Then R %Y G is prime if and only if R is G-prime.
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Applications s-unital group rings

The s-unital Connell's theorem

Let R be an s-unital ring. We define the group ring R|G] as the set of all
formal sums > 7,0, where . is a symbol for each z € G and r, € R
is zero for all but finitely many x € G. Addition on R[G] is defined in the
natural way and multiplication is defined by linearly extending the rules
70510y = 17/ 04y, for all 7,7’ € R and z,y € G.

Theorem (Lannstrom, Lundstrdm, 0, Wagner)

Let R be an s-unital ring. TFAAE:

@ The group ring R[G] is prime.

@ R is prime, and G has no non-trivial finite normal subgroup.
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Applications s-unital group rings

Reference

D. Lannstrom, P. Lundstrom, J. Qinert and S. Wagner,

Prime group graded rings with applications to partial crossed products and
Leavitt path algebras,

arXiv:2105.09224 [math.RA]
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s-unital group rings
The location of Blekinge Institute of Technology
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s-unital group rings
The location of Blekinge Institute of Technology
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s-unital group rings
The location of Blekinge Institute of Technology
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Applications s-unital group rings

The campus in Karlskrona
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s-unital group rings
The end

THANK YOU FOR YOUR ATTENTION!
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