Hopf25

Christian Lomp

University of Porto, Portugal Parallel sessions, Forum E Tuesday, April 22, 2025 16h30-16h55

Generalized Kac-Paljutkin algebras

The aim of this talk is to show how to construct a family of non-trivial semisimple Hopf algebras $H_{n,m}$ of dimension $n^m m!$ over a field \mathbb{K} containing a primitive nth root of unity, for integers $n, m \geq 2$. The well-known eight-dimensional Kac-Paljutkin algebra arises as $H_{2,2}$, while the Hopf algebras constructed by Pansera correspond to the cases $H_{n,2}$. Each algebra $H_{n,m}$ is an extension of the symmetric group algebra $\mathbb{K}S_m$ by the *m*-fold tensor product $\mathbb{KZ}_n^{\otimes m}$ of the group algebra of the cyclic group of order n, and can be realized as a crossed product $H_{n,m} = \mathbb{K}\mathbb{Z}_n^{\otimes m} \#_{\gamma}S_m$. More generally, considering the set of transpositions $s_i = (i, i + 1) \in S_m$, we provide sufficient conditions on a twist J for a bialgebra B to construct a family of twists $J_{s_1},\ldots,J_{s_{m-1}}$ for the bialgebra $\bar{R}=B^{\otimes m}.$ We show that the skew monoid algebra R # M, where M is the free monoid on the generators $\{\overline{s}_1, \ldots, \overline{s}_{m-1}\}$, admits a bialgebra structure with comultiplication given by $\Delta(\overline{s}_i) = J_{s_i}(\overline{s}_i \otimes \overline{s}_i)$. Additional conditions on J ensure the existence of a Hopf algebra quotient H = (R # M)/I, which is isomorphic to a crossed product $R \#_{\gamma} S_m$, and is semisimple whenever R is. We also present a family of irreducible *m*-dimensional representations of $\mathbb{K}\mathbb{Z}_n^{\otimes m} \#_{\gamma} S_m$ that are inner faithful as *R*-modules and exhibit a nontrivial action on a quantum polynomial algebra.