
On the finite generation of the cohomology of abelian

extensions of Hopf algebras

Nicolás Andruskiewitsch

Universidad de Córdoba, Argentina
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I. Antecedents. Let k be a field; we may assume that k = k.
Let G be a finite group and H = kG the group algebra.

Theorem. (Maschke, 1898)

If char k ∤ |G|, then H = kG is semisimple.

When char k | |G|, H is not semisimple and one would need to
compute the groups

ExtnH(N,M)

for any finitely generated H-modules N and M , any n ∈ N. Note:

ExtnH(k,M ⊗N∗) ≃ ExtnH(N,M).
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Theorem (Golod, 1959; Evens, 1961; Venkov, 1959).

The following properties hold:

(fgc-i) The cohomology ring

H(H, k) = Ext•H(k, k) =
⊕

n∈N0

ExtnH(k, k)

is finitely generated, and

(fgc-ii) For any finitely generated H-module M ,

H(H,M) = Ext•H(k,M) =
⊕

n∈N0

ExtnH(k,M)

is a finitely generated H(H, k)-module.
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Theory of the support variety (Quillen, 1971):

Use algebraic geometry to study the representation theory of G,

more precisely via Ext•H(k, k) and the support of Ext•H(k,M).
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If char k = 0, any cocommutative finite-dimensional Hopf algebra
is a group algebra.

If char k > 0, there are more cocommutative finite-dimensional
Hopf algebras (difficult to classify).

Example. The restricted enveloping algebra u(g) of a fin.-dim.
restricted Lie algebra g is a fin.-dim. cocommutative Hopf alg.

Theorem (Friedlander & Parshall, 1983).
Let H = u(g), g a finite-dimensional restricted Lie algebra.

(fgc-i) The cohomology ring H(H, k) is finitely generated.

(fgc-ii) For any finitely generated H-module M , H(H,M) is a
finitely generated module over H(H, k).
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Assume that char k = p > 0.

Let g be a finite-dimensional complex simple Lie algebra. The

nilpotent cone of g is N = {x ∈ g : (adx)n = 0, n ≫ 0}.

Let G be the associated restricted Lie algebra over k, H = u(G).

Theorem (Friedlander & Parshall, 1986).

The cohomology ring H(H, k) is isomorphic to the graded ring

of polynomial functions over N .
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Remark. These three categories are equivalent:

{cocommutative finite-dimensional Hopf algebras},
{commutative finite-dimensional Hopf algebras}op,

{finite group schemes}.

Theorem (Friedlander & Suslin, 1997).

Let H be a cocommutative finite-dimensional Hopf algebra (that

is, a finite group scheme).

(fgc-i) The cohomology ring H(H, k) is finitely generated.

(fgc-ii) For any finitely generated H-module M , H(H,M) is a

finitely generated module over H(H, k).
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In the same paper, Friedlander & Suslin observe that the coho-

mology ring of a finite-dimensional commutative Hopf algebra is

easily seen to be finitely generated using the structure and add:

We do not know whether it is reasonable to expect fi-

nite generation of the cohomology of an arbitrary finite-

dimensional Hopf algebra.

Definition. We say that a finite-dimensional augmented algebra

H has finite generation of the cohomology (fgc) if

(fgc-i) The cohomology ring H(H, k) is finitely generated.

(fgc-ii) For any finitely generated H-module M , H(H,M) is a

finitely generated module over H(H, k).

8



Theorem (Ginzburg & Kumar 1993).

(char k = 0). Let H be the Frobenius-Lusztig kernel (aka small

quantum group) uq(g), g a simple Lie algebra, q ∈ G∞ with re-

strictions on the order.

Then H has (fgc).

Actually they prove that H(H, k) is isomorphic to the algebra

of rational functions on the nilpotent cone of g.

Note: Similar, more restricted result by Verbistky & Kazhdan.
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Conjecture. (Etingof & Ostrik, 2005) A finite tensor category C
(e.g. C = repH, H finite-dimensional Hopf algebra) has fgc:

(fgc-i) The cohomology ring Ext•C(1, 1) is finitely generated.

(fgc-ii) If M ∈ C, Ext•C(1,M) is a fin. gen. Ext•C(1, 1)-module.

Known in many cases, for instance:

• (Gordon 2000). (char k = 0). H = uq(g)∗, g a simple Lie algebra,

q ∈ G∞ with restrictions on the order, has (fgc).

• (Drupieski 2011). (char k > 0). H = uq(g), g a simple Lie algebra,

q ∈ G∞ with restrictions on the order, has (fgc).

• (Drupieski 2016). char k > 0: Finite supergroup schemes have (fgc).
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• (Mastnak-Petvsova-Schauenburg-Witherspoon 2010) (char k = 0).

H pointed, G(H) abelian, (|G(H)|,210) = 1, has (fgc)..

• (A-Angiono-Petvsova-Witherspoon 2022) (char k = 0).

If H is pointed, G(H) abelian and the associated Nichols algebra

comes in families, then D(H) has (fgc).

• (Stefan & Vay 2016). (char k = 0).

H = B(V )#kS3, where B(V ) ≃ FK3, dimB(V ) = 12, has (fgc).

• (Nguyen, Wang & Witherspoon; Erdmann, Solberg & Wang 2018).

(char k = p > 0). (Some) pointed Hopf algebras of dim p3 have (fgc).

• (Friedlander & Negron, 2019; Negron, 2021) If H is cocommutative,

then D(H) has (fgc).
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II. Morita equivalence.

Let H = (H,m,∆) be a finite-dim. Hopf algebra.
If H has (fgc), does...

• H∗ = (H,∆t,mt) have (fgc)?

• HF = (H,m,∆F ) have (fgc)?

• Hσ = (H,mσ,∆) have (fgc)?

• D(H) = Drinfeld double have (fgc)?
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Questions:

Let H = (H,m,∆) be a finite-dim. Hopf algebra.
If H has (fgc), does...

• H∗ = (H,∆t,mt) have (fgc)?

• HF = (H,m,∆F ) have (fgc)?

• Hσ = (H,mσ,∆) have (fgc)?

• D(H) = Drinfeld double have (fgc)?
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Let H and U be finite-dimensional Hopf algebras.

We say that H and U are Morita equivalent, H ∼Mor U , if there

exists an equivalence of braided tensor categories between the

Drinfeld centers Z(repH) and Z(repU) (Müger, Etingof-Nikshych-

Ostrik). Equivalently, D(H) ≃ D(U)G, G a twist.

Example. H ∼Mor H
∗, H ∼Mor H

F , H ∼Mor Hσ.

Remark. This is not the same as Morita equivalence of algebras.
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Lemma. [AAPW, Negron-Plavnik] Let R be an augmented subalge-

bra of a finite-dimensional augmented algebra A.

Suppose that A is projective as a right R-module under multipli-

cation. If A has fgc, then so does R.

Corollary. [AAPW, Negron-Plavnik] Let H and U be finite-dim. Mo-

rita equivalent Hopf algebras. If D(H) has fgc, then U has fgc.

Indeed, D(H) has fgc =⇒ D(U) has fgc =⇒ U has fgc.

In particular, if D(H) has fgc, then H∗, HF , Hσ have fgc.
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Scheme of the proof of Theorem [AAPW].

Theorem A. Let U be a braided vector space of diagonal type

such that the Nichols algebra B(U) has finite dimension. Then

B(U) has fgc.

The rest of the proof: Let H be a f.d. pointed Hopf algebra

with G(H) abelian & infinitesimal braiding V , so that H ∼Morita

grH ≃ B(V )#kG(H) (Angiono, Angiono-Garćıa Iglesias). Then

Theorem A +3 B(V ), B(V ∗) have fgc +3 grH, (grH)∗ have fgc

��

H has fgc D(H) has fgcks D(grH) has fgc+3ks
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III. Extensions.

Consider an extension of finite-dimensional Hopf algebras:

k → K → H → L → k (∗)

As we have seen, If H has fgc, then so does K.

Question.[A-Natale] If H has fgc, does L also have fgc?

Lemma. [AAPW] K semisimple, L has fgc, then so does H.

Question. [A-Natale] If K and L have fgc, does H also have fgc?
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Consider an abelian extension of finite-dim. Hopf algebras:

k → K → H → L → k, (∗)
that is, K is commutative and L is cocommutative.
Thus, K and L have fgc (and H if char k = 0; assume char k > 0).

Split extensions. [G. I. Kac, Majid] The following are equivalent:

exact factorizations ↔ matched pairs ↔ split extensions

S = G · L oo ///o/o/o/o/o/o/o/o/o/o/o/o (G,L, ., /) oo ///o/o/o/o/o/o/o/o/o/o (L∗, G,↼, ρ)

S = G ./ L oo (G,L, ., /) oo ///o/o/o/o/o/o/o L∗ ↪→ L∗#G↠ G.

Note: S cocommutative ⇔ L∗ ↪→ L∗#G↠ G abelian extension.

Note: Any abelian extension is like L∗ ↪→ L∗τ#σG↠ G

for suitable 2-cocycles τ and σ.
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Consider an abelian extension of finite-dim. Hopf algebras:

k → K → H → L → k, (∗)

Definition. We say that H is quasi-split if it is Morita equivalent

to the split extension: H ∼Mor K#L.

Theorem. (Schauenburg) If (∗) is a split abelian extension, then

there is a cocommutative Hopf algebra U such that H ∼Mor U

(actually, U ≃ L ./ K∗).

Theorem. (A.-Natale) If H is a quasi-split abelian extension, then

D(H), hence H and any Hopf algebra U ∼Mor H, have fgc.

Proof: Negron + Schauenburg.
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IV. Applications. Assume in this Section that char k > 2.

A class of braided vector spaces V was introduced in (A-Angiono-

Heckenberger); they decompose as direct sums of Jordan blocks,

super Jordan blocks and labelled points. Their Nichols algebras

are finite-dimensional.

Let V+ be the subclass with only Jordan blocks and points la-

belled with 1; these depend on a family of parameters:

Λ ∋ (q, a)⇝ V (q, a).
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Let (q, a) ∈ Λ.

Theorem. (A.-Natale) For a suitable finite abelian group Γ ,

• the bosonization H = B(V (1, a))#kΓ fits into a split abelian

exact sequence, hence D(H), H and B(V (1, a)) have fgc;

• for a general q, B(V (q, a))#kΓ is a cocycle deformation of H,

hence D(B(V (q, a))#kΓ ), B(V (q, a))#kΓ and B(V (q, a)) have

fgc too.
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As illustration, we give details for two simple examples.

The Jordan block V(1,2) is the braided vector space with basis

{x, y} such that

c(x⊗x) = x⊗x, c(y⊗x) = x⊗y,

c(x⊗y) = (y + x)⊗x, c(y⊗y) = (y + x)⊗y.

Lemma. [Cibils-Lauve-Witherspoon]

The Nichols algebra B(V(1,2)) (called the restricted Jordan

plane) is generated by x, y with relations

yx− xy + 1
2x

2, xp, yp.

{xayb : 0 ≤ a, b < p} is a basis of B(V(1,2)) ⇒ dimB(V(1,2)) = p2.
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The minimal bosonization.

Let Γ = Z/p = ⟨g⟩. We realize V(1,2) in kΓ
kΓYD by

g · x = x, g · y = y + x, degx = deg y = g.

Thus the Hopf algebra H = B(V(1,2))#kΓ has dimension p3.

Let K = k⟨x, g⟩ ⊂ H and L = k[ζ]/(ζp) with ζ primitive.

Lemma. [A-Natale] H fits into a split abelian extension

k → K
ι→ H

π→ L → k,

ι is the inclusion & π is defined by π(x) = 0, π(g) = 1, π(y) = ζ.

Remark. [A-Peña Pollastri] The Drinfeld double of H fits into an

abelian exact sequence k → R → D(H) → u(sl2(k)) → k, where R

is a local commutative Hopf algebra.
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Proposition.

(i) [Nguyen-Wang-Witherspoon] The Hopf algebra B(V(1,2))#kΓ
and the Nichols algebra B(V(1,2)) have fgc.

(ii) [A-Natale] The Drinfeld double D (B(V(1,2))#kΓ ) has fgc.

Question: Let F be another finite group such that V(1,2) ad-

mits a realization in kF
kFYD. Does B(V(1,2))#kF have fgc?

Proposition. [A-Natale] (B(V(1,2))#kF )∗ has fgc.
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The Nichols algebra B(Lq(1,G )). Let q ∈ k×, a ∈ Fp× and

r ∈ {1− p,2− p, . . . ,−2,−1} such that r ≡ 2a mod p.

The ghost is G := −r ∈ {1, . . . , p− 1}; since p is odd, G gives a.

The braided vector space Lq(1,G ) has basis b = {x1, y1, x2} and

(c(b⊗ b′))b,b′∈b =

 x1 ⊗ x1 (y1 + x1)⊗ x1 q x2 ⊗ x1
x1 ⊗ y1 (y1 + x1)⊗ y1 q x2 ⊗ y1

q−1x1 ⊗ x2 q−1(y1 + ax1)⊗ x2 x2 ⊗ x2

 .

Thus V1 := kx1 + ky1 ≃ V(1,2) and V2 := kx2 satisfy

c : Vi ⊗ Vj = Vj ⊗ Vi, i, j ∈ {1,2}.

Hence V1 and V2 are braided subspaces of V .
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Set z0 := x2, zn+1 := y1zn − qzny1, n > 0.

Lemma. [A-Angiono-Heckenberger] The Nichols algebra B(Lq(1,G ))

is generated by x1, y1, x2 with relations

y1x1 − x1y1 + 1
2x

2
1, x

p
1, y

p
1.

x1x2 = q x2x1,

z1+G = 0,

ztzt+1 = q−1 zt+1zt, 0 ≤t < G ,

z
p
t = 0, 0 ≤t ≤ G .

It has dimB(Lq(1,G )) = pG+3; indeed a PBW-basis is

B = {xm1
1 y

m2
1 z

nG
G . . . z

n1
1 z

n0
0 : 0 ≤ mi, nj < p}.
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The minimal bosonization. Assume that q is a root of 1. Set
d := ord q; then (d, p) = 1. Fix f ∈ Z>0 pd. Let

Γ = Z/f × Z/f = ⟨g1⟩ ⊕ ⟨g2⟩, where ord g1 = ord g2 = f.

Let Γ = Z/p = ⟨g⟩. We realize Lq(1,G ) in kΓ
kΓYD by

g1 · x1 = x1, g1 · y1 = y1 + x1, g1 · x2 = qx2,

g2 · x1 = q−1x1, g2 · y1 = q−1(y1 + ax1), g2 · x2 = x2,

degx1 = g1, deg y1 = g1, degx2 = g2.

The Hopf algebra H = B(Lq(1,G ))#kΓ has dimension pG+3f2.
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Let E = ( 0 1
0 0 ). Let V (G ) be a sl(2)-module of highest weight

G , with a basis (vn)n∈I0,G such that

E · vn = vn+1, 0 ≤ n < G , E · vG = 0.

Let l = V (G ) ⋊ kE, a restricted Lie subalgebra of V (G ) ⋊ sl(2).

Lemma. [A-Natale] B(L1(1,G ))#kΓ fits into a split abelian ex-

tension

k → K
ι→ B(L1(1,G ))#kΓ π→ u(l) → k,

where K = k⟨x1, g1, g2⟩, ι is the inclusion and π is defined by

π(x1) = 0, π(y1) = E, π(x2) = v0,

π(g1) = 1, π(g2) = 1.
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Theorem. [A-Natale]

(i) The Drinfeld double D (B(L1(1,G ))#kΓ ) has fgc.

Therefore, the Hopf algebra B(L1(1,G ))#kΓ and the Nichols

algebra B(L1(1,G )) have fgc.

(ii) The Drinfeld double D (B(Lq(1,G ))#kΓ ) has fgc.

Therefore, the Hopf algebra B(Lq(1,G ))#kΓ and the Nichols

algebra B(Lq(1,G )) have fgc.

Indeed, B(Lq(1,G ))#kΓ is a cocycle deformation of B(L1(1,G ))#kΓ .
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