On the Hopf envelope of finite-dimensional bialgebras Based on a joint work with C. Menini and P. Saracco (arxiv:2504.05821)

Alessandro Ardizzoni

HOPF25

Conference on Hopf algebras, quantum groups, monoidal categories and related structures

ULB Brussels. April 22-26, 2025

The Hopf envelope (a.k.a. free Hopf algebra)

All vector spaces and tensor products are over an arbitrary base field \Bbbk .

The Hopf envelope (a.k.a. free Hopf algebra)

All vector spaces and tensor products are over an arbitrary base field \Bbbk .

Recall that the Hopf envelope of a bialgebra B is a Hopf algebra H(B)with a bialgebra map $\eta_B : B \to H(B)$ such that any bialgebra map $f : B \to H$ into a Hopf algebra H factors through H(B), i.e. there exists a unique Hopf algebra map $f' : H(B) \to H$ such that $f' \circ \eta_B = f$. Equivalently H : Bialg \to Hopf is a left adjoint of the forgetful functor.

The Hopf envelope (a.k.a. free Hopf algebra)

All vector spaces and tensor products are over an arbitrary base field \Bbbk .

Recall that the Hopf envelope of a bialgebra B is a Hopf algebra H(B)with a bialgebra map $\eta_B : B \to H(B)$ such that any bialgebra map $f : B \to H$ into a Hopf algebra H factors through H(B), i.e. there exists a unique Hopf algebra map $f' : H(B) \to H$ such that $f' \circ \eta_B = f$. Equivalently H : Bialg \to Hopf is a left adjoint of the forgetful functor.

The above notion is attributed to Manin

Mn Y.I. Manin. *Quantum groups and noncommutative geometry*, 1988. and extends the notion of the free Hopf algebra on a coalgebra claimed by Sweedler and later proved by Takeuchi.

Sw M.E. Sweedler. *Hopf Algebras*, 1969.

Ta M. Takeuchi. Free Hopf algebras generated by coalgebras, 1971.

An explicit construction of H(B) is given in

Pa B. Pareigis. *Quantum Groups and Noncommutative Geometry*, 2002.

It is given by defining

- the family $(B_i)_{i\in\mathbb{N}}$ in Bialg: $B_0 \coloneqq B$; $B_{i+1} \coloneqq B_i^{\operatorname{op cop}}$;
- $B' = \prod_{i \in \mathbb{N}} B_i$, the coproduct in Bialg (equiv. in Alg) of $(B_i)_{i \in \mathbb{N}}$;
- the anti-bialgebra map $S': B' \to B'$ such that $S' \circ \iota_i = \iota_{i+1}$ where $\iota_i: B_i \to B'$ are the coproduct injections;
- $I := \langle (S' * \operatorname{Id} u'\varepsilon')(x_i), (\operatorname{Id} * S' u'\varepsilon')(x_i) | x_i \in \iota_i(B_i), i \in \mathbb{N} \rangle;$ • $\operatorname{H}(B) = \frac{B'}{I};$
- $\eta_B: B \to \mathrm{H}(B)$ by $\eta_B(b) = \iota_0(b) + I$;
- $S: \operatorname{H}(B) \to \operatorname{H}(B)$, by S(b'+I) = S'(b') + I, $b' \in B'$;

An explicit construction of H(B) is given in

Pa B. Pareigis. *Quantum Groups and Noncommutative Geometry*, 2002.

It is given by defining

- the family $(B_i)_{i\in\mathbb{N}}$ in Bialg: $B_0 \coloneqq B$; $B_{i+1} \coloneqq B_i^{\operatorname{op cop}}$;
- $B' = \prod_{i \in \mathbb{N}} B_i$, the coproduct in Bialg (equiv. in Alg) of $(B_i)_{i \in \mathbb{N}}$;
- the anti-bialgebra map $S': B' \to B'$ such that $S' \circ \iota_i = \iota_{i+1}$ where $\iota_i: B_i \to B'$ are the coproduct injections;
- $I := \langle (S' * \operatorname{Id} u'\varepsilon')(x_i), (\operatorname{Id} * S' u'\varepsilon')(x_i) | x_i \in \iota_i(B_i), i \in \mathbb{N} \rangle;$ • $\operatorname{H}(B) = \frac{B'}{I};$
- $\eta_B: B \to \mathrm{H}(B)$ by $\eta_B(b) = \iota_0(b) + I;$
- $S: \operatorname{H}(B) \to \operatorname{H}(B)$, by S(b'+I) = S'(b') + I, $b' \in B'$;

Evidently, the construction above is not so handy: for instance the coproduct $\prod_{i\in\mathbb{N}} A_i$ in Alg of a family of algebras $(A_i)_{i\in\mathbb{N}}$ is obtained as a suitable quotient of the tensor algebra $T(\bigoplus_{i\in\mathbb{N}} A_i)$.

An explicit construction of H(B) is given in

Pa B. Pareigis. *Quantum Groups and Noncommutative Geometry*, 2002.

It is given by defining

- the family $(B_i)_{i\in\mathbb{N}}$ in Bialg: $B_0 \coloneqq B$; $B_{i+1} \coloneqq B_i^{\operatorname{op cop}}$;
- $B' = \prod_{i \in \mathbb{N}} B_i$, the coproduct in Bialg (equiv. in Alg) of $(B_i)_{i \in \mathbb{N}}$;
- the anti-bialgebra map $S': B' \to B'$ such that $S' \circ \iota_i = \iota_{i+1}$ where $\iota_i: B_i \to B'$ are the coproduct injections;
- $I := \langle (S' * \operatorname{Id} u'\varepsilon')(x_i), (\operatorname{Id} * S' u'\varepsilon')(x_i) | x_i \in \iota_i(B_i), i \in \mathbb{N} \rangle;$ • $\operatorname{H}(B) = \frac{B'}{I};$
- $\eta_B: B \to \mathrm{H}(B)$ by $\eta_B(b) = \iota_0(b) + I;$
- $S: \operatorname{H}(B) \to \operatorname{H}(B)$, by S(b'+I) = S'(b') + I, $b' \in B'$;

Evidently, the construction above is not so handy: for instance the coproduct $\coprod_{i\in\mathbb{N}} A_i$ in Alg of a family of algebras $(A_i)_{i\in\mathbb{N}}$ is obtained as a suitable quotient of the tensor algebra $T(\bigoplus_{i\in\mathbb{N}} A_i)$.

It is therefore interesting to look for simpler descriptions, when available.

The bialgebra map $\eta_B : B \to H(B)$ is always an epimorphism in Bialg, see **Ch** A. Chirvăsitu. On epimorphisms and monomorphisms of Hopf algebras, 2010. The bialgebra map $\eta_B : B \to H(B)$ is always an epimorphism in Bialg, see **Ch** A. Chirvăsitu. On epimorphisms and monomorphisms of Hopf algebras, 2010.

However, in general, it is not surjective as the following example shows.

Example

When M is a monoid and $B = \Bbbk M$ is the monoid algebra, it is known that $H(B) = \Bbbk G(M)$ where G(M) is the enveloping group of M while η_B is induced by the canonical map $\eta_M : M \to G(M)$. If M is abelian then G(M) is the Grothendieck group of M. In particular, $G(\mathbb{N}) = \mathbb{Z}$ and $\eta_{\mathbb{N}} : \mathbb{N} \to \mathbb{Z}$ is injective. The bialgebra map $\eta_B : B \to H(B)$ is always an epimorphism in Bialg, see **Ch** A. Chirvăsitu. On epimorphisms and monomorphisms of Hopf algebras, 2010.

However, in general, it is not surjective as the following example shows.

Example

When M is a monoid and $B = \Bbbk M$ is the monoid algebra, it is known that $H(B) = \Bbbk G(M)$ where G(M) is the enveloping group of M while η_B is induced by the canonical map $\eta_M : M \to G(M)$. If M is abelian then G(M) is the Grothendieck group of M. In particular, $G(\mathbb{N}) = \mathbb{Z}$ and $\eta_{\mathbb{N}} : \mathbb{N} \to \mathbb{Z}$ is injective.

Goals

Take a finite-dimensional bialgebra B. Our aim is twofold:

- **(**) to provide an alternative and simpler description of H(B);
- 2 to prove that η_B is surjective (so H(B) is a quotient of B).

The bialgebra map $\eta_B: B \to H(B)$ is always an epimorphism in Bialg, see Ch A. Chirvăsitu. On epimorphisms and monomorphisms of Hopf algebras, 2010.

However, in general, it is not surjective as the following example shows.

Example

When M is a monoid and $B = \Bbbk M$ is the monoid algebra, it is known that H(B) = &G(M) where G(M) is the enveloping group of M while η_B is induced by the canonical map $\eta_M : M \to G(M)$. If M is abelian then G(M) is the Grothendieck group of M. In particular, $G(\mathbb{N}) = \mathbb{Z}$ and $\eta_{\mathbb{N}} : \mathbb{N} \to \mathbb{Z}$ is injective.

Goals

Take a finite-dimensional bialgebra B. Our aim is twofold:

- \bigcirc to provide an alternative and simpler description of H(B);
- 2 to prove that η_B is surjective (so H (B) is a quotient of B).

We will attach to any bialgebra B a suitable quotient bialgebra Q(B)which will coincide with H(B) in the finite-dimensional case.

A. Ardizzoni (Univ. Torino - Italy) Hopf envelope f.d. bialgebras

For sake of shortness, we introduce the "oslash" notation by setting

$$B \oslash B \coloneqq \frac{B \otimes B}{(B \otimes B)B^+}$$

where $B^+ = \ker(\varepsilon)$ is the augmentation ideal.

For sake of shortness, we introduce the "oslash" notation by setting

$$B \oslash B := \frac{B \otimes B}{(B \otimes B)B^+}$$

where $B^+ = \ker(\varepsilon)$ is the augmentation ideal.

Essentially the equivalence class $x \oslash y$ of $x \bigotimes y$ further obeys the identity $xb_1 \oslash yb_2 = x \oslash y\varepsilon(b), \forall x, y, b \in B.$

For sake of shortness, we introduce the "oslash" notation by setting

$$B \oslash B := \frac{B \otimes B}{(B \otimes B)B^+}$$

where $B^+ = \ker(\varepsilon)$ is the augmentation ideal.

Essentially the equivalence class $x \oslash y$ of $x \otimes y$ further obeys the identity $xb_1 \oslash yb_2 = x \oslash y\varepsilon(b), \forall x, y, b \in B.$

Proposition

 $B \oslash B$ is a quotient coalgebra of $B \otimes B^{cop}$ and the canonical map $i_B : B \to B \oslash B, x \mapsto x \oslash 1$, is a coalgebra map.

For sake of shortness, we introduce the "oslash" notation by setting

$$B \oslash B := \frac{B \otimes B}{(B \otimes B)B^+}$$

where $B^+ = \ker(\varepsilon)$ is the augmentation ideal.

Essentially the equivalence class $x \oslash y$ of $x \otimes y$ further obeys the identity $xb_1 \oslash yb_2 = x \oslash y\varepsilon(b), \forall x, y, b \in B.$

Proposition

 $B \oslash B$ is a quotient coalgebra of $B \otimes B^{cop}$ and the canonical map $i_B : B \to B \oslash B, x \mapsto x \oslash 1$, is a coalgebra map.

Example

When B has antipode S, then i_B is bijective with $i_B^{-1}(x \oslash y) = xS(y)$.

Definition

For an arbitrary bialgebra B we define

$$Q(B) \coloneqq rac{B}{\langle \ker(i_B)
angle}$$

and we denote by $q_B:B o Q(B)$ the projection.

Definition

For an arbitrary bialgebra B we define

$$Q(B) \coloneqq rac{B}{\langle \ker(i_B)
angle}$$

and we denote by $q_B:B o Q(B)$ the projection.

<u>NOTE</u>: Since i_B is a coalgebra map, then ker (i_B) is a coideal so that Q(B) is a bialgebra and $q_B : B \to Q(B)$ is a bialgebra map.

Definition

For an arbitrary bialgebra B we define

$$Q(B) \coloneqq rac{B}{\langle \ker(i_B)
angle}$$

and we denote by $q_B:B o Q(B)$ the projection.

<u>NOTE</u>: Since i_B is a coalgebra map, then ker (i_B) is a coideal so that Q(B) is a bialgebra and $q_B : B \to Q(B)$ is a bialgebra map.

Proposition (Key property of Q(B))

Any bialgebra map $f: B \to C$ into a bialgebra Cwith i_C injective (e.g. C is Hopf) factors through Q(B) i.e. there is a unique bialgebra map $f': Q(B) \to C$ such that $f' \circ q_B = f$.

Proof. One has
$$(f \oslash f) \circ i_B = i_C \circ f$$
 so that $\ker(i_B) \subseteq \ker(i_C \circ f) = \ker(f)$.

A. Ardizzoni (Univ. Torino - Italy)

Hopf envelope f.d. bialgebras

In order to prove that H(B) = Q(B) for B f.d., we need the following.

Lemma

If B is a finite-dimensional bialgebra, there is a minimum $n \in \mathbb{N}$ and a map $S \in \operatorname{End}_{\Bbbk}(B)$ with $S * \operatorname{Id}^{*n+1} = \operatorname{Id}^{*n} = \operatorname{Id}^{*n+1} * S$. Here Id^{*n} denotes the n-th convolution power of $\operatorname{Id} : B \to B$. In order to prove that H(B) = Q(B) for B f.d., we need the following.

Lemma

If B is a finite-dimensional bialgebra, there is a minimum $n \in \mathbb{N}$ and a map $S \in \operatorname{End}_{\Bbbk}(B)$ with $S * \operatorname{Id}^{*n+1} = \operatorname{Id}^{*n} = \operatorname{Id}^{*n+1} * S$. Here Id^{*n} denotes the n-th convolution power of $\operatorname{Id} : B \to B$.

We will call such an S an *n*-antipode and B an *n*-Hopf algebra.

In order to prove that H(B) = Q(B) for B f.d., we need the following.

Lemma

If B is a finite-dimensional bialgebra, there is a minimum $n \in \mathbb{N}$ and a map $S \in \operatorname{End}_{\Bbbk}(B)$ with $S * \operatorname{Id}^{*n+1} = \operatorname{Id}^{*n} = \operatorname{Id}^{*n+1} * S$. Here Id^{*n} denotes the n-th convolution power of $\operatorname{Id} : B \to B$.

We will call such an S an *n*-antipode and B an *n*-Hopf algebra.

Proof.

Since B is f.d., then so is the convolution algebra $\operatorname{End}_{\Bbbk}(B)$. Hence $\operatorname{Id} \in \operatorname{End}_{\Bbbk}(B)$ is algebraic over \Bbbk . Thus there is a polynomial $f \in \Bbbk[X]$ such that $f(\operatorname{Id}) = 0$. If n is the degree of the smallest power of X occurring in f, we can assume its coefficient to be 1 and rewrite $f = g \cdot X^{n+1} + X^n$ for some $g \in \Bbbk[X]$. Then $0 = f(\operatorname{Id}) = g(\operatorname{Id}) * \operatorname{Id}^{*n+1} + \operatorname{Id}^{*n}$ and hence $S * \operatorname{Id}^{*n+1} = \operatorname{Id}^{*n}$ where we set $S := -g(\operatorname{Id}) \in \operatorname{End}_{\Bbbk}(B)$. Since Xg = gX we have $\operatorname{Id} * S = S * \operatorname{Id}$. Thus $\operatorname{Id}^{*n+1} * S = \operatorname{Id}^{*n}$.

Example

Fix $n \in \mathbb{N}$. Consider the monoid $G = \langle x \mid x^{n+1} = x^n \rangle$, presented by the generator x with relation $x^{n+1} = x^n$. Let $\Bbbk G$ be the monoid algebra. Then $\mathrm{Id}^{*n+1} = \mathrm{Id}^{*n}$ and $\Bbbk G$ is an *n*-Hopf algebra with *n*-antipode $S = u \circ \varepsilon$.

Example

Fix $n \in \mathbb{N}$. Consider the monoid $G = \langle x \mid x^{n+1} = x^n \rangle$, presented by the generator x with relation $x^{n+1} = x^n$. Let $\Bbbk G$ be the monoid algebra. Then $\mathrm{Id}^{*n+1} = \mathrm{Id}^{*n}$ and $\Bbbk G$ is an *n*-Hopf algebra with *n*-antipode $S = u \circ \varepsilon$.

Let *B* be a 2-Hopf algebra with 2-antipode *S*. Then $S * \mathrm{Id}^{*3} = \mathrm{Id}^{*2}$ i.e. $S(y_1)y_2y_3y_4 = y_1y_2, \forall y \in B$ so that

 $xS(y) \oslash 1 = xS(y_1)y_2y_3y_4 \oslash y_7y_6y_5 = xy_1y_2 \oslash y_5y_4y_3 = x \oslash y.$

Example

Fix $n \in \mathbb{N}$. Consider the monoid $G = \langle x \mid x^{n+1} = x^n \rangle$, presented by the generator x with relation $x^{n+1} = x^n$. Let $\Bbbk G$ be the monoid algebra. Then $\mathrm{Id}^{*n+1} = \mathrm{Id}^{*n}$ and $\Bbbk G$ is an *n*-Hopf algebra with *n*-antipode $S = u \circ \varepsilon$.

Let *B* be a 2-Hopf algebra with 2-antipode *S*. Then $S * \mathrm{Id}^{*3} = \mathrm{Id}^{*2}$ i.e. $S(y_1)y_2y_3y_4 = y_1y_2, \forall y \in B$ so that

 $xS(y) \oslash 1 = xS(y_1)y_2y_3y_4 \oslash y_7y_6y_5 = xy_1y_2 \oslash y_5y_4y_3 = x \oslash y.$

A similar argument for an arbitrary $n \in \mathbb{N}$ leads to

Proposition

Let B be a n-Hopf algebra with n-antipode S. Then $xS(y) \oslash 1 = x \oslash y$ for every $x, y \in B$. In particular, the canonical map $i_B : B \to B \oslash B, x \mapsto x \oslash 1$, is surjective.

Let B be a finite-dimensional bialgebra. Then $H(B) = Q(B) = \frac{B}{\langle \ker(i_B) \rangle}$.

Let B be a finite-dimensional bialgebra. Then $H(B) = Q(B) = \frac{B}{(\ker(i_B))}$.

<u>Proof Sketch</u>. Step1 We have seen that *B* has an *n*-antipode *S* for some $n \in \mathbb{N}$ and that $xS(y) \oslash 1 = x \oslash y, \forall x, y \in B$. In particular $x_1S(x_2) \oslash 1 = x_1 \oslash x_2 = \varepsilon(x)1 \oslash 1$ so that $x_1S(x_1) - \varepsilon(x)1 \in \ker(i_B)$. Since $\ker(q_B) = \langle \ker(i_B) \rangle$, we get $q_B(x_1)q_BS(x_1) = \varepsilon(x)1$. Hence $q_B : B \to Q(B)$ is right convolution invertible.

Let B be a finite-dimensional bialgebra. Then $H(B) = Q(B) = \frac{B}{(\ker(i_B))}$.

<u>Proof Sketch</u>. Step1 We have seen that *B* has an *n*-antipode *S* for some $n \in \mathbb{N}$ and that $xS(y) \oslash 1 = x \oslash y, \forall x, y \in B$. In particular $x_1S(x_2) \oslash 1 = x_1 \oslash x_2 = \varepsilon(x)1 \oslash 1$ so that $x_1S(x_1) - \varepsilon(x)1 \in \ker(i_B)$. Since $\ker(q_B) = \langle \ker(i_B) \rangle$, we get $q_B(x_1)q_BS(x_1) = \varepsilon(x)1$. Hence $q_B : B \to Q(B)$ is right convolution invertible.

Step2 Since B' := Q(B) is a quotient of B it is finite-dimensional too. Hence it has an n'-antipode S' for some $n' \in \mathbb{N}$. Now

$$\mathrm{Id}^{*n'} = S' * \mathrm{Id}^{*n'+1} \Rightarrow \mathrm{Id}^{*n'} q_B = (S' * \mathrm{Id}^{*n'+1}) q_B \Rightarrow \frac{q_B^{*n'}}{a_B^{*n'}} = (S'q_B) * q_B^{*n'+1}$$

By Step1, we can cancel $q_B^{*n'}$ on the right. Therefore $S'q_B$ and q_B are mutual convolution inverses.

Let B be a finite-dimensional bialgebra. Then $H(B) = Q(B) = \frac{B}{(\ker(i_B))}$.

<u>Proof Sketch</u>. Step1 We have seen that *B* has an *n*-antipode *S* for some $n \in \mathbb{N}$ and that $xS(y) \oslash 1 = x \oslash y, \forall x, y \in B$. In particular $x_1S(x_2) \oslash 1 = x_1 \oslash x_2 = \varepsilon(x)1 \oslash 1$ so that $x_1S(x_1) - \varepsilon(x)1 \in \ker(i_B)$. Since $\ker(q_B) = \langle \ker(i_B) \rangle$, we get $q_B(x_1)q_BS(x_1) = \varepsilon(x)1$. Hence $q_B : B \to Q(B)$ is right convolution invertible.

Step2 Since B' := Q(B) is a quotient of B it is finite-dimensional too. Hence it has an n'-antipode S' for some $n' \in \mathbb{N}$. Now

$$\mathrm{Id}^{*n'} = S' * \mathrm{Id}^{*n'+1} \Rightarrow \mathrm{Id}^{*n'} q_B = (S' * \mathrm{Id}^{*n'+1}) q_B \Rightarrow \begin{array}{c} q_B^{*n'} = (S'q_B) * q_B^{*n'+1} \end{array}$$

By Step1, we can cancel $q_B^{*n'}$ on the right. Therefore $S'q_B$ and q_B are mutual convolution inverses.

Step3 Since q_B is surjective we get that S' and Id are mutual convolution inverses so Q(B) is a Hopf algebra. Therefore its key property is just the universal property of H(B) so that Q(B) = H(B).

A. Ardizzoni (Univ. Torino - Italy)

Two Examples

As an example of *n*-Hopf algebra, we cosidered $B = \mathbb{k}\langle x \mid x^{n+1} = x^n \rangle$. More generally, for $p \in \mathbb{N} \setminus \{0\}$, we have the finite-dimensional bialgebra

$$B = \mathbb{k} \langle x \mid x^{n+p} = x^n \rangle$$

which is a *n*-Hopf algebra with *n*-antipode $S = Id^{*p-1}$.

Two Examples

As an example of *n*-Hopf algebra, we cosidered $B = \mathbb{k}\langle x \mid x^{n+1} = x^n \rangle$. More generally, for $p \in \mathbb{N} \setminus \{0\}$, we have the finite-dimensional bialgebra

 $B = \Bbbk \langle x \mid x^{n+p} = x^n \rangle$

which is a *n*-Hopf algebra with *n*-antipode $S = Id^{*p-1}$.

One proves that ${\sf ker}(i_B)=\langle x^{\pmb{p}}-1\rangle$ so that

$$\mathrm{H}(B) \stackrel{B \mathrm{f.d.}}{=} Q(B) = \frac{B}{\langle \ker(i_B) \rangle} = \frac{B}{\langle x^p - 1 \rangle} \cong \mathbb{k} \langle x \mid x^p = 1 \rangle = \mathbb{k} C_p$$

where C_p is the cyclic group of order p.

Two Examples

As an example of *n*-Hopf algebra, we cosidered $B = \mathbb{k}\langle x \mid x^{n+1} = x^n \rangle$. More generally, for $p \in \mathbb{N} \setminus \{0\}$, we have the finite-dimensional bialgebra

 $B = \Bbbk \langle x \mid x^{n+p} = x^n \rangle$

which is a *n*-Hopf algebra with *n*-antipode $S = Id^{*p-1}$.

One proves that ${\sf ker}(i_B)=\langle x^{\pmb{p}}-1\rangle$ so that

$$\mathrm{H}(B) \stackrel{B \mathrm{f.d.}}{=} Q(B) = \frac{B}{\langle \ker(i_B) \rangle} = \frac{B}{\langle x^p - 1 \rangle} \cong \mathbb{k} \langle x \mid x^p = 1 \rangle = \mathbb{k} C_p$$

where C_p is the cyclic group of order p.

In the particular case when n = 2 and p = 3, we get $B = \mathbb{k}\langle x \mid x^5 = x^2 \rangle$ and $S = \mathrm{Id}^{*2}$. One easily checks that $S(x^4) = S(x)$ so that S is not injective whence not even surjective. The second example we want to illustrate is the f.d. bialgebra

$$B = \Bbbk \langle x, y \mid yx = -xy, x^3 = x, y^2 = 0 \rangle$$

which is 6-dimensional with basis $\{1, x, x^2, y, xy, x^2y\}$. Its coalgebra structure is uniquely determined by

$$\Delta\left(x
ight)=x\otimes x$$
 and $\Delta\left(y
ight)=x\otimes y+y\otimes 1.$

The second example we want to illustrate is the f.d. bialgebra

$$B = \Bbbk \langle x, y \mid yx = -xy, x^3 = x, y^2 = 0 \rangle$$

which is 6-dimensional with basis $\{1, x, x^2, y, xy, x^2y\}$. Its coalgebra structure is uniquely determined by

$$\Delta(x) = x \otimes x$$
 and $\Delta(y) = x \otimes y + y \otimes 1$.

One proves that ${\sf ker}(i_B)=\langle x^2-1\rangle$ so that

$$\mathrm{H}(B) \stackrel{B \text{ f.d.}}{=} Q(B) = \frac{B}{\langle \ker(i_B) \rangle} = \frac{B}{\langle x^2 - 1 \rangle} \cong H_4$$

where the latter is the Sweedler's 4-dimensional Hopf algebra

$$H_4 = \Bbbk \left\langle x, y \mid yx = -xy, x^2 = 1, y^2 = 0 \right\rangle.$$

The second example we want to illustrate is the f.d. bialgebra

$$B = \Bbbk \left\langle x, y \mid yx = -xy, x^3 = x, y^2 = 0 \right\rangle$$

which is 6-dimensional with basis $\{1, x, x^2, y, xy, x^2y\}$. Its coalgebra structure is uniquely determined by

$$\Delta\left(x
ight)=x\otimes x$$
 and $\Delta\left(y
ight)=x\otimes y+y\otimes 1.$

One proves that ${\sf ker}(i_B)=\langle x^2-1\rangle$ so that

$$\mathrm{H}(B) \stackrel{B \text{ f.d.}}{=} Q(B) = \frac{B}{\langle \ker(i_B) \rangle} = \frac{B}{\langle x^2 - 1 \rangle} \cong H_4$$

where the latter is the Sweedler's 4-dimensional Hopf algebra

$$H_4 = \mathbb{k} \left\langle x, y \mid yx = -xy, x^2 = 1, y^2 = 0 \right\rangle.$$

Moreover B has a 1-antipode $S : B \to B$ which is an anti-algebra map with $S^4 = \text{Id.}$ It is defined by S(x) = x and $S(y) = (1 - x - x^2) y$.

Under appropriate assumptions, our construction extends to the infinite-dimensional case.

Under appropriate assumptions, our construction extends to the infinite-dimensional case.

For instance we have the following

Theorem

Let B be a bialgebra which is left Artinian (i.e. it satisfies the descending chain condition on left ideals). Then H(B) = Q(B).

Under appropriate assumptions, our construction extends to the infinite-dimensional case.

For instance we have the following

Theorem

Let B be a bialgebra which is left Artinian (i.e. it satisfies the descending chain condition on left ideals). Then H(B) = Q(B).

As a consequence, since B is left Artinian so is its quotient H(B) = Q(B). Since the H(B) is a Hopf algebra, we deduce it is finite-dimensional, by LZ C.-H. Liu, J.J. Zhang. Artinian Hopf algebras are finite dimensional, 2007.

Under appropriate assumptions, our construction extends to the infinite-dimensional case.

For instance we have the following

Theorem

Let B be a bialgebra which is left Artinian (i.e. it satisfies the descending chain condition on left ideals). Then H(B) = Q(B).

As a consequence, since B is left Artinian so is its quotient H(B) = Q(B). Since the H(B) is a Hopf algebra, we deduce it is finite-dimensional, by LZ C.-H. Liu, J.J. Zhang. Artinian Hopf algebras are finite dimensional, 2007.

Remark

The proof of the above theorem does not use the notion of n-Hopf algebra since we don't know whether left Artinian implies n-Hopf.

There exist left-Artinian bialgebras which are not finite-dimensional.

There exist left-Artinian bialgebras which are not finite-dimensional.

Example

Let A be a k-algebra and consider the product algebra $B := A \times k$. Note that if A is left Artinian and infinite-dimensional (e.g $A = \mathbb{R}, k = \mathbb{Q}$) then so is B (left ideals in B are $I \times 0$ and $I \times k$ where I is a left ideal in A). Then B becomes a bialgebra by setting, $\forall a \in A, k \in k$,

$$\Delta(a,k)=(1,1)\otimes(a,0)+(a,k)\otimes(0,1)$$
 and $arepsilon(a,k)=k$

One gets that $S := u_B \circ \varepsilon_B$ is a 1-antipode and $ker(i_B) = ker(\varepsilon_B)$. Hence

$$\mathrm{H}(B) \stackrel{B \text{ left.Art.}}{=} Q(B) = \frac{B}{\langle \ker(i_B) \rangle} = \frac{B}{\ker(\varepsilon_B)} \cong \Bbbk$$

There exist left-Artinian bialgebras which are not finite-dimensional.

Example

Let A be a k-algebra and consider the product algebra $B := A \times k$. Note that if A is left Artinian and infinite-dimensional (e.g $A = \mathbb{R}, k = \mathbb{Q}$) then so is B (left ideals in B are $I \times 0$ and $I \times k$ where I is a left ideal in A). Then B becomes a bialgebra by setting, $\forall a \in A, k \in k$,

$$\Delta(a,k)=(1,1)\otimes(a,0)+(a,k)\otimes(0,1)$$
 and $arepsilon(a,k)=k$

One gets that $S := u_B \circ \varepsilon_B$ is a 1-antipode and $ker(i_B) = ker(\varepsilon_B)$. Hence

$$\mathrm{H}(B) \stackrel{B \text{ left. Art.}}{=} Q(B) = \frac{B}{\langle \ker(i_B) \rangle} = \frac{B}{\ker(\varepsilon_B)} \cong \Bbbk$$

The previous example applies also to A finite-dimensional...

If
$$A = \Bbbk \langle c \mid c^n = 1 \rangle$$
, $n > 1$, we get the bialgebra
 $B = A \times \Bbbk = \Bbbk \langle x \mid x^{n+1} = x \rangle$ where $x \coloneqq (c, 0)$,
 $\Delta(x) = 1 \otimes x + x \otimes (1 - x^n)$ and $\varepsilon(x) = 0$.

We noticed that $\eta_B : B \to H(B)$ is not surjective in general. As a consequence H(B) and Q(B) do not always coincide. <u>EXAMPLE</u>: $H(\Bbbk \mathbb{N}) = \Bbbk \mathbb{Z} \neq \Bbbk \mathbb{N} = Q(\Bbbk \mathbb{N}).$ We noticed that $\eta_B : B \to H(B)$ is not surjective in general. As a consequence H(B) and Q(B) do not always coincide. <u>EXAMPLE</u>: $H(\Bbbk\mathbb{N}) = \Bbbk\mathbb{Z} \neq \Bbbk\mathbb{N} = Q(\Bbbk\mathbb{N})$.

We proved that a f.d. bialgebra B is an n-Hopf algebra and H(B) = Q(B). We don't know if for an arbitrary n-Hopf algebra B one has H(B) = Q(B). We noticed that $\eta_B : B \to H(B)$ is not surjective in general. As a consequence H(B) and Q(B) do not always coincide. <u>EXAMPLE</u>: $H(\Bbbk\mathbb{N}) = \Bbbk\mathbb{Z} \neq \Bbbk\mathbb{N} = Q(\Bbbk\mathbb{N})$.

We proved that a f.d. bialgebra B is an n-Hopf algebra and H(B) = Q(B). We don't know if for an arbitrary n-Hopf algebra B one has H(B) = Q(B). Still we can iteratively reconstruct H(B) as follows.

For an arbitrary bialgebra B, define iteratively $Q^{n+1}(B) = Q(Q^n(B))$. This gives a sequence of bialgebras

$$B \xrightarrow{q_B} Q(B) \xrightarrow{q_{Q(B)}} Q^2(B) \xrightarrow{q_{Q^2(B)}} Q^3(B) \xrightarrow{q_{Q^3(B)}} \cdots$$

whose direct limit $Q^{\infty}(B) = \underline{\lim}_{n} Q^{n}(B)$ results to be a bialgebra.

We noticed that $\eta_B : B \to H(B)$ is not surjective in general. As a consequence H(B) and Q(B) do not always coincide. <u>EXAMPLE</u>: $H(\Bbbk\mathbb{N}) = \Bbbk\mathbb{Z} \neq \Bbbk\mathbb{N} = Q(\Bbbk\mathbb{N}).$

We proved that a f.d. bialgebra B is an *n*-Hopf algebra and H(B) = Q(B). We don't know if for an arbitrary *n*-Hopf algebra B one has H(B) = Q(B). Still we can iteratively reconstruct H(B) as follows.

For an arbitrary bialgebra B, define iteratively $Q^{n+1}(B) = Q(Q^n(B))$. This gives a sequence of bialgebras

$$B \xrightarrow{q_B} Q(B) \xrightarrow{q_{Q(B)}} Q^2(B) \xrightarrow{q_{Q^2(B)}} Q^3(B) \xrightarrow{q_{Q^3(B)}} \cdots$$

whose direct limit $Q^{\infty}(B) = \underline{\lim}_{n} Q^{n}(B)$ results to be a bialgebra.

We can prove that

Theorem

Let B be an n-Hopf algebra. Then $H(B) = Q^{\infty}(B)$.

A. Ardizzoni (Univ. Torino - Italy)

For an arbitrary bialgebra, we have the following

Proposition

For B a bialgebra,
$$Q^{\infty}(B) = \underset{n}{\lim} Q^{n}(B)$$
 has $i_{Q^{\infty}(B)}$ injective.

For an arbitrary bialgebra, we have the following

Proposition

For B a bialgebra,
$$Q^{\infty}(B) = \underset{n}{\lim} Q^{n}(B)$$
 has $i_{Q^{\infty}(B)}$ injective.

Proposition

For $B = \Bbbk M$ a monoid algebra, i_B is injective iff M is right cancellative.

For an arbitrary bialgebra, we have the following

Proposition

For B a bialgebra,
$$Q^{\infty}(B) = \varinjlim_n Q^n(B)$$
 has $i_{Q^{\infty}(B)}$ injective.

Proposition

For $B = \Bbbk M$ a monoid algebra, i_B is injective iff M is right cancellative.

Remark

Let $B = \Bbbk M$ be a monoid algebra.

Since $Q^{\infty}(B)$ is a quotient of B we get $Q^{\infty}(B) = \Bbbk C$ for some monoid C. By the previous result, $i_{Q^{\infty}(B)}$ injective means that C is right cancellative. The key property of Q(B) now implies that C is the maximal right cancellative monoid homomorphic image of M.

Thus $Q^{\infty}(B)$ can be regarded as a bialgebra counterpart of the maximal right cancellative monoid homomorphic image.

THANK YOU!