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Outline of talk

This talk is a preliminary report on work in progress. Comments
welcomed.

I Orbit categories and Hecke algebras for groups.

I Orbit categories and their linearisations for (pointed) Hopf
algebras.

I Hecke algebras for (�nite dimensional) Hopf algebra pairs.

I Things to do: Mackey & Green functors, cohomological
aspects,. . . .
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Recollections on orbit categories for groups

Let G be a (�nite) group and F a family of subgroups which is
closed under conjugation (maybe with additional properties). The
orbit category OG ;F has as its objects the sets of left cosets G=K
(K 2 F), and morphisms the G -equivariant maps f : G=L! G=K
(K ; L 2 F). Here f is determined by its value on the coset 1 = 1L,
f (1) = x = xK say, where for ` 2 L, `x = x ; hence x�1Lx 6 K or
equivalently L 6 xKx�1.
We can linearise OG ;F over a �eld | using the functors

|(�) : OG ;F !Mod|G ! Vect|

which send G=K to the permutation |G -module |G=K and
morphisms to the induced |G -module or |-linear maps. Now |G is
a Hopf algebra and for any subgroup K 6 G , the quotient map
|G ! |G=K is a homomorphism of |G -module coalgebras. If
K ; L 2 F there is a natural bijection

Coalg|G| (|G=L;|G=K ) ! OG ;F(G=L;G=K ):
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The classical notion of Hecke algebra is the vector space |HnG=H
spanned by the double cosets of H equipped with a multiplication
making it isomorphic to the opposite algebra End|G (|G=H)op.
Here an endomorphism f 2 End|G (|G=H) is determined by its
value on 1 and this lies in the H-invariant subspace H(|G=H). If G
is �nite every H-invariant is a linear combination of H-orbit sums

X
h : H=H\xHx�1

hxH

taken over a complete set of representatives of H=H \ xHx�1, and
this is identi�ed with the double coset HxH.
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The multiplication: For fx 2 End|G (|G=H) with fx(1) = HxH,

fx � fy (1) =
X

k : H=H\yHy�1

kyfx(1) =
X

x : H=H\xHx�1

k : H=H\yHy�1

kyhx1:

So identifying HxH with fx we obtain a formula involving the sum
over all double cosets

HyH � HxH =
X
z

czy ;xHzH;

where czy ;x is a certain numerical function of x ; y ; z .
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Recollections on Hopf algebras and quotient coalgebras

For a |-coalgebra C let C0 be its coradical, i.e., the sum of all its
simple subcoalgebras. For a surjective coalgebra homomorphism
� : C ! D, D0 � �C0. When C is pointed this implies that D0 is
spanned by group-like elements so D is also pointed.
For a Hopf algebra H and subHopf algebra K � H,

H==K = H=HK+ �= H 
K |

is a quotient H-module coalgebra where K+ = ker " (the kernel of
the counit). If H is pointed so is H==K and its group-like elements
are images of group-likes of H under the quotient map. An
H-module coalgebra homomorphism � : H==L! H==K is
determined by the group-like element �(1) where 1 = 1 + HL+, so
�(1) = a = a+ HK+ for some a 2 H; if a is group-like then it is
also a unit. Also, if ` 2 L+ then `a = 0; so if a is invertible,
a�1La � HK+ or equivalently,

L � H(aK+a�1) = H(aKa�1)+:
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Orbit categories for Hopf algebras

Now let H be a �nite dimensional (pointed) Hopf algebra over the
�eld | and let G be a family of subHopf algebras closed under
adjoint actions (maybe with other conditions). The orbit category

OH;G has objects the H==K (K 2 G) and morphisms given by

OH;G(H==L;H==K ) = CoalgH| (H==L;H==K );

the set of H-module coalgebra homomorphisms H==L! H==K .
An element � 2 CoalgH

|
(H==L;H==K ) is determined by �(1)

which is an L-invariant (i.e., it is annihilated by L+) group-like
element of H==K . We will denote the set of such elements
by GpL(H==K ) and identify it with CoalgH

|
(H==L;H==K ).

Andrew Baker (University of Glasgow) Orbit Categories and Hecke algebras



There is an inclusion

CoalgH| (H==L;H==K ) = GpL(H==K ) ,!ModL(|;H==K )

where we send x 2 GpL(H==K ) to the linear map |! H==K
sending 1 to x . This is an L-module homomorphism and

ModL(|;H==K ) �= ModH(H 
L |;H==K ) = ModH(H==L;H==K );

so we obtain a map

CoalgH| (H==L;H==K ) ,!ModH(H==L;H==K ):

Consider an H-module coalgebra homomorphism

H==L! H==K ; h 7! hx

where L+x 2 HK+ and x 2 H with x group-like.
If H is pointed then we can take x to be group-like and so
invertible. Since h = (hx�1)x , this homomorphism is surjective. If
dim| L = dim| K , such a homomorphism is an isomorphism.
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Hopf Hecke algebras

De�nition: The Hopf Hecke algebra of a pair K � H of �nite
dimensional Hopf algebras is the algebra

H(H;K ) = EndH(H==K )op:

An element � 2 H(H;K ) is an H-module homomorphism with
�(1) 2 K (H==K ), so �(1) = a where K+a � HK+. For another
element � with �(1) = b, � � �(1) = ab. This gives an algebra
structure on K (H==K ) making it isomorphic to EndH(H==K )op.
Alternatively, K (H==K ) can be viewed as the quotient algebra of
the idealizer of the left ideal HK+ in H.

To get results analogous to known ones for Hecke algebras of �nite
groups some assumptions are required on the pair K � H of �nite
dimensional Hopf algebras
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The pair (H;K ) is a �nite Frobenius Hopf pair if H is unimodular
and involutory (hence K is also involutory); it follows that K � H
is a Frobenius extension.
As dim H(H==K ) = 1, we can choose t0 2 H projecting to a
non-zero element t0 2

H(H==K ). Such a pair (H;K ) is regular if

I the relative trace �HK = t0� :
KH ! HH =

R l

H is non-trivial on
HH � KH, i.e., "(t0) 6= 0.

In that case we can assume "(t0) = 1 and t20 = t0 2 H(H;K ), and
it can be shown that t0 is central (this uses the involution to be
discussed later).
For a left H-module M, �HK : KM ! HM restricts to the identity
function on HM � KM. So a short exact sequence of H-modules

0! L! M ! N ! 0

splits i� the short exact sequence of K -modules

0! L #HK! M #HK! N #HK! 0

splits.
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These conditions imply there is an isomorphism of left H-modules

H==K
�=
��! (H==K )�

which we make explicit as follows.
Let 0 6= s0 2

R l

K . Then there is an isomorphism of left H-modules

H==K
�=
��! Hs0; h ! hs0:

It can be shown that t0s0 2
R l

H and t0s0 = ��(s0)t0 where
�(s0) 2

R r

K .
For a Frobenius form � on H de�ne an left H-module isomorphism

H==K
�=
��! (H==K )�; h ! �((�)hs0):
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An algebra involution will mean a self-inverse anti-algebra
homomorphism.

Theorem

There is an algebra involution

d( ) : H(H;K )! H(H;K ); ba = ba
characterised by bas0 = �(s0)�(a), where ba 2 H is only well de�ned

modulo HK+.

For the case of a classical Hecke algebra for a pair of �nite groups
H 6 G , this involution of |HnG=H is given by HgH 7! Hg�1H.
There is a trace form � on H(H;K ) �=

K (H==K ) � H==K , given by
h 7! �(hs0) and � has an associated non-degenerate pairing on
H(H;K ) given by

(a; b) 7! �(abbs0) = �(a�(s0)�(a)):

If K is also unimodular then �(s0) = �s0.
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The following commutative diagram de�nes c( ).

H(H;K )
c( ) // H(H;K )

K (H==K )
OO

�=
��

K (H==K )
OO
�=
��

HomK (|;H==K )
OO

�=
��

HomK (|;H==K )
OO
�=
��

HomK (|; (H==K )�)
OO

�= adjunction
��

HomK (|; (H==K )�)
OO
�=adjunction
��

Hom|(|
K H==K ; |) Hom|(|
K H==K ; |)

Hom|(|
K H 
K |; |) oo
�=

(1
�
1)� // Hom|(|
K H 
K |; |)
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More to do: In general H(H;K ) is not semi-simple. In the �nite
group case this can be characterised using conditions on the
characteristic of | not dividing orbit lengths. This will involve
better understanding of the trace form. Regularity amounts to a
kind of relative semi-simplicity condition.
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Mackey functors and all that

An important motivation for introducing Hecke algebras is that
they act on certain types of functors on orbit categories. For
example, the cohomology functor Ext�H(|;H==K ) has an action by
H(H;K ) and this generalises to actions on Mackey functors for an
orbit category; formulating this precisely requires notions such as
rings with many objects built out of `double coset' constructions
H(H;K ; L) for pairs of subHopf algebras K ; L of H. A Mackey
functor encodes restriction along morphisms H==L! H==K as well
as induction/transfer maps which arise from commutative
diagrams of the form

H==K
fy //

OO
�=
��

H==L
OO
�=
��

(H==K )�
f � // (H==L)�

where f : H==L! H==K is an H-module homomorphism.
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In fact we have already de�ned a transfer/induction map for two
left H-modules M and N, namely

�HK : HomK (M;N)! HomH(M;N)

since there are identi�cations

HomK (M;N) = K Hom|(M;N); HomH(M;N) = H Hom|(M;N):

Here the map is given in Sweedler notation by

�HK (f ) = t0 � f =
X

(t0)(1)f (�((t0)(2))(�)):

If M = | this induces a transfer map Ext�K (|;N)! Ext�H(|;N).
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Thank you for listening!
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