Categories graded by group homomorphisms HOPF25

Jonathan E. Davies (Supervisor: Robert Laugwitz)

University of Nottingham

22 April 2025

Introduction

Introduction	τ-graded categories	τ-module categories	Structure theorem	Conclusion
o●o	000000	οοοοοο	00000	000

Introduction

Theorem (Sözer-Virelizier 2023)

Fusion **categories graded by crossed modules** can be used to construct 3-dimensional Homotopy Quantum Field Theories with base space a homotopy 2-type.

ntroduction	τ-graded categories	τ-module categories	Structure theorem	Conclusion
⊃●○	000000	000000	00000	000

Introduction

Theorem (Sözer-Virelizier 2023)

Fusion **categories graded by crossed modules** can be used to construct 3-dimensional Homotopy Quantum Field Theories with base space a homotopy 2-type.

Crossed module

A group homomorphism 'with extra structure'.

Introduction	τ-graded categories	τ-module categories	Structure theorem	Conclusion
oo●	οοοοοο	οοοοοο	00000	000
Outline			(au:	$H \to G)$

- τ-graded categories
 1.1 Definition
 1.2 Semisimplicity
- 2. Correspondence with τ -module categories 2.1 Special case (G = 1) 2.2 General case
- 3. Structure theorem for semisimple τ -graded categories 3.1 Special case (G = 1) 3.2 General case
- 4. Current work

τ-graded categories

$\tau\text{-}\mathsf{graded}$ categories with H=1

$$(\tau\colon H\to G)$$

G-graded category

A category with subcategories $(\mathcal{C}_q)_{q\in G}$ such that

- 1. objects are finite direct sums $\bigoplus_{g \in G} X_g$, $X_g \in \mathcal{C}_g$.
- 2. Hom(X, Y) = 0 for homogeneous X, Y unless |X| = |Y|.

Example: $Vect_G$ is *G*-graded.

- Every G-graded vector space is of the form $V = \bigoplus_{g \in G} V_g$.
- Morphisms are by definition degree-preserving linear maps.

$\tau\text{-}\mathsf{graded}$ categories with G=1

$$(\tau\colon H\to G)$$

H-Hom-graded category

A category enriched in Vect_H . That is, a \Bbbk -linear category with

- $\operatorname{Hom}(X, Y) = \bigoplus_{h \in H} \operatorname{Hom}^{h}(X, Y) \in \operatorname{Vect}_{H}.$
- $|f' \circ f| = |f'||f|.$

Example: $Vect_H^{\bullet}$ is *H*-Hom-graded.

- 1-subcategory is $Vect_H$ (objects, degree 1 morphisms).
- Degree h morphisms are linear $f \colon V \to W$ with each $f(V_a) \subseteq W_{ha}$.

$\tau\text{-}\mathsf{graded}$ categories for general τ

$$(\tau \colon H \to G)$$

τ -graded category

An H-Hom-graded category $\mathcal C$ such that

- 1. C^1 is G-graded
- 2. Hom^h(X, Y) = 0 for homogeneous X, Y unless $|Y| = \tau(h)|X|$.

Example: Vect[•]_H is τ -graded for any G.

 $\begin{array}{l} \text{Choose each } |\mathbbm{k}_h| = \tau(h) \\ \implies \operatorname{Hom}^h(\mathbbm{k}_a, \mathbbm{k}_{a'}) = 0 \text{ unless } a' = ha \text{, hence } \tau(a') = \tau(h)\tau(a). \end{array}$

Introduction	τ-graded categories	τ-module categories	Structure theorem	Conclusion
000	0000●0	000000	00000	000
Semisimplicity				$(\tau\colon H\to G)$

Shifts

A *H*-Hom-graded category C has shifts if for each $h \in H$, $X \in C$ there is an object $X\langle h \rangle$ together with a canonical degree *h* isomorphism

 $r_{X,h}\colon X\to X\langle h\rangle\,.$

Semisimple *H*-Hom-graded category

An H-Hom-graded category with shifts such that the 1-subcategory is semisimple.

Introduction	τ-graded categories	τ-module categories	Structure theorem	Conclusion
000	00000●	οοοοοο	00000	000
Semisimplicity			(au	$: H \to G)$

Shifts and semisimplicity for a general τ -graded category As for the underlying *H*-Hom-graded category.

Example: $\operatorname{Vect}_{H}^{fd,\bullet}$

- Simple objects $(\Bbbk_h)_{h\in H}$ have $\operatorname{Hom}(\Bbbk_h, \Bbbk_{h'}) = \delta_{h'h} \Bbbk$.
- Shifts $\mathbb{k}_h \langle h' \rangle = \mathbb{k}_{h'h}$ with $r_{\mathbb{k}_h,h'} \colon \bigoplus_{a \in H} \delta_{ah} v \mapsto \bigoplus_{a \in H} \delta_{ah'h} v$.

 τ -module categories

Introduction	τ-graded categories	τ-module categories	Structure theorem	Conclusion
000	000000	⊙●oooo	00000	000
Shifts as an H ·	-action			$(\tau\colon H\to G)$

Lemma

If C is an H-Hom-graded category with shifts, then $(C^1, \alpha, \mu, \epsilon)$ is an H-module category (Vect_H-module) with $\alpha^h X = X\langle h \rangle$ and

 $X \xrightarrow{\epsilon_X = r_{X,1}} \alpha^1 X = X \langle 1 \rangle$

Introduction	τ-graded categories	τ-module categories	Structure theorem	Conclusion
000	000000	oo●ooo		000
Shifts as an	H-action		$(\tau$	$H \to G$

Lemma

Every *H*-module category $(\mathcal{D}, \alpha, \mu, \epsilon)$ induces an *H*-Hom-graded category \mathcal{D}^{\bullet} with shifts $X\langle h \rangle = \alpha^h X$.

$$\operatorname{Hom}_{\mathcal{D}^{\bullet}}(X,Y) = \bigoplus_{h \in H} \operatorname{Hom}_{\mathcal{D}^{\bullet}}^{h}(X,Y) = \bigoplus_{h \in H} \operatorname{Hom}_{\mathcal{D}}(\alpha^{h}X,Y)$$
$$\operatorname{id}_{X}^{\bullet} = \epsilon_{X}^{-1} \colon \alpha^{1}X \to X \qquad \qquad \alpha^{h'h}X \xrightarrow{f' \circ^{\bullet}f} Z$$
$$r_{X,h} = \operatorname{id}_{\alpha^{h}X} \colon \alpha^{h}X \to \alpha^{h}X \qquad \qquad \alpha^{h'n}X \xrightarrow{\alpha^{h'}f} \alpha^{h'}Y \xrightarrow{f} Z$$

Shifts as an *H*-action

$\overline{(\tau\colon H}\to \underline{G})$

Theorem

There is a 2-equivalence between the 2-categories of

- *H*-Hom-graded categories with shifts
- *H*-module categories.

Theorem

There is a 2-equivalence between the 2-categories of

- semisimple *H*-Hom-graded categories
- semisimple *H*-module categories.

General τ -module categories

 $(\tau\colon H\to G)$

τ -graded category

An *H*-Hom-graded category C such that 1. C^1 is *G*-graded 2. Hom^h(*X*, *Y*) = 0 for homogeneous *X*, *Y* unless $|Y| = \tau(h)|X|$.

τ -module category

A $G\text{-}\mathsf{graded}\ H\text{-}\mathsf{module}\ \mathsf{category}\ (\mathcal{D},\alpha,\mu,\epsilon)$ such that

 $|\alpha^h X| = \tau(h)|X|$

for homogeneous $X \in \mathcal{D}$.

General τ -module categories

Theorem

There is a 2-equivalence between the 2-categories of

- au-graded categories with shifts
- τ -module categories.

Theorem

There is a 2-equivalence between the 2-categories of

- semisimple τ -graded categories
- semisimple τ -module categories.

Structure theorem

Theorem

An H-module category \mathcal{D} is semisimple if and only if it is of the form $\mathcal{D} \simeq \bigoplus_{i \in I} \mathcal{M}(L_i, \psi_i)$.

See e.g. Example 7.4.10 of EGNO Tensor Categories (2015).

Structure theorem for *H*-Hom-graded categories

 $\overline{(\tau \colon H} \to G)$

 $\mathcal{M}^{\bullet}(L,\psi)$ for $L \leq H$, normalised 2-cocycle $\psi \colon H^2 \to \operatorname{Fun}(H/L, \Bbbk^{\times})$

The indecomposable semisimple H-Hom-graded category with

- simple objects $(\mathbbm{k}_{hL})_{hL\in H/L}$
- morphisms $\operatorname{Hom}^k({\Bbbk_{hL}},{\Bbbk_{h'L}})\cong \delta_{khL,h'L}{\Bbbk}$
- shifts $\mathbb{k}_{hL}\langle k
 angle = \mathbb{k}_{khL}$ with $r_{\mathbb{k}_{hL},k}$ given by a choice of basis
- composition $r_{\Bbbk_{khL},k'}\circ r_{\Bbbk_{hL},k}=\psi(k',k)(hL)^{-1}r_{\Bbbk_{hL},k'k}$

Example: $\operatorname{Vect}_{H}^{\bullet} \simeq \mathcal{M}^{\bullet}(1,1)$

Theorem

An $H\operatorname{-Hom}$ -graded category ${\mathcal C}$ is semisimple if and only if it is of the form

 $\mathcal{C} \simeq \bigoplus_{i \in I} \mathcal{M}^{\bullet}(L_i, \psi_i) \,.$

• I is in bijection with the simples $(S_i)_{i \in I}$ up to general isomorphism

• $L_i = \{h \in H : S_i \langle h \rangle \cong S_i\}$ (degree 1 isomorphisms)

Fix representatives $(h_a)_{a \in J}$ for cosets in H/L_i . For $k \in H$, let h_b represent the coset kh_aL_i , and choose a canonical isomorphism $e^i_{a,k}$ spanning $\operatorname{Hom}^k_{\mathcal{C}}(S_i\langle h_a\rangle, S_i\langle h_b\rangle)$. Then ψ_i is defined by $e^i_{a,k'k} = \psi_i(k',k)(h_aL_i) \cdot (e^i_{b,k'} \circ e^i_{a,k})$.

Structure theorem for general au-graded categories

 $(\tau \colon H \to G)$

Lemma

Let $g \in G$, and suppose $L \leq \ker(\tau)$. Then $\mathcal{M}^{\bullet}(L, \psi) =: \mathcal{M}^{\bullet}_{\tau}(L, \psi) \langle g \rangle$ is τ -graded with each $|\mathbb{k}_{hL}| = \tau(h)g$.

Theorem

A au-graded category ${\cal C}$ is semisimple if and only if it is of the form

$$\mathcal{C} \simeq \bigoplus_{i \in I} \mathcal{M}^{\bullet}_{\tau}(L_i, \psi_i) \langle g_i \rangle \,.$$

We choose each L_i and ψ_i as before, and $g_i = |S_i|$.

Conclusion

Introduction	τ-graded categories	τ-module categories	Structure theorem	Conclusion
000	000000	000000	ooooo	o●o

Outlook

When $\tau =: \chi$ is a crossed module,

- χ -module categories are pseudofunctors $\mathbb{k} \operatorname{Disc}(\mathcal{G}_{\chi}) \to 2 \mathbb{V}$ ect.
- there is a Deligne tensor product \boxtimes of χ -graded categories.

I am working to show that

- \boxtimes corresponds to the Day convolution of χ -module categories.
- finite semisimple χ -graded categories form a fusion 2-category, in which χ -graded fusion categories are the algebra objects.

Introduction	τ-graded categories	τ-module categories	Structure theorem	Conclusion
ooo	000000	οοοοοο	00000	
Deferrences				

- Kursat Sözer and Alexis Virelizier. *Monoidal Categories Graded by Crossed Modules and 3-Dimensional HQFTs*, Adv. Math 428 (2023). arXiv: 2207.06534
- Etingof, Gelaki, Nikshych and Ostrik. *Tensor Categories*, Mathematical Surveys and Monographs 205 (2015)

References

Thank you for listening!