
REGULAR HOM-LIE STRUCTURES
ON INCIDENCE ALGEBRAS

Mykola Khrypchenko
CMUP, Departamento de Matemática, Faculdade de Ciências,

Universidade do Porto,
Rua do Campo Alegre s/n, 4169–007 Porto, Portugal

nskhripchenko@gmail.com

A Hom-Lie algebra [3,4] over a field K is a triple (L, [·, ·], φ), where L is a
K-vector space, [·, ·] is an anti-commutative bilinear multiplication on L and
φ : L → L is a linear map satisfying the so-called Hom-Jacobi identity

[[a, b], φ(c)] + [[b, c], φ(a)] + [[c, a], φ(b)] = 0

for all a, b, c ∈ L. A Hom-Lie algebra (L, [·, ·], φ), in which φ is an automorphism
of (L, [·, ·]), is called regular [5]. If (L, [·, ·]) is itself a (usual) Lie algebra, then
by a (regular) Hom-Lie structure on L we mean a linear map φ : L → L making
(L, [·, ·], φ) a (regular) Hom-Lie algebra.

In this talk we will describe regular Hom-Lie structures on the incidence
algebra I(X,K) (under the commutator product) of a finite connected poset X
over a field K. Our description is based on the description of Lie automorphisms
of I(X,K) given in [1].

This is a joint work [2] with Érica Z. Fornaroli and Ednei A. Santulo Jr from
the Maringá State University (Brazil).
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